{"title":"Molecular engineering to improve lignocellulosic biomass based applications using filamentous fungi.","authors":"Jiali Meng, Miia R Mäkelä, Ronald P de Vries","doi":"10.1016/bs.aambs.2020.09.001","DOIUrl":null,"url":null,"abstract":"<p><p>Lignocellulosic biomass is an abundant and renewable resource, and its utilization has become the focus of research and biotechnology applications as a very promising raw material for the production of value-added compounds. Filamentous fungi play an important role in the production of various lignocellulolytic enzymes, while some of them have also been used for the production of important metabolites. However, wild type strains have limited efficiency in enzyme production or metabolic conversion, and therefore many efforts have been made to engineer improved strains. Examples of this are the manipulation of transcriptional regulators and/or promoters of enzyme-encoding genes to increase gene expression, and protein engineering to improve the biochemical characteristics of specific enzymes. This review provides and overview of the applications of filamentous fungi in lignocellulosic biomass based processes and the development and current status of various molecular engineering strategies to improve these processes.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":"114 ","pages":"73-109"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.aambs.2020.09.001","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.aambs.2020.09.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 8
Abstract
Lignocellulosic biomass is an abundant and renewable resource, and its utilization has become the focus of research and biotechnology applications as a very promising raw material for the production of value-added compounds. Filamentous fungi play an important role in the production of various lignocellulolytic enzymes, while some of them have also been used for the production of important metabolites. However, wild type strains have limited efficiency in enzyme production or metabolic conversion, and therefore many efforts have been made to engineer improved strains. Examples of this are the manipulation of transcriptional regulators and/or promoters of enzyme-encoding genes to increase gene expression, and protein engineering to improve the biochemical characteristics of specific enzymes. This review provides and overview of the applications of filamentous fungi in lignocellulosic biomass based processes and the development and current status of various molecular engineering strategies to improve these processes.
期刊介绍:
Advances in Applied Microbiology offers intensive reviews of the latest techniques and discoveries in this rapidly moving field. The editors are recognized experts and the format is comprehensive and instructive.
Published since 1959, Advances in Applied Microbiology continues to be one of the most widely read and authoritative review sources in microbiology.
Recent areas covered include bacterial diversity in the human gut, protozoan grazing of freshwater biofilms, metals in yeast fermentation processes and the interpretation of host-pathogen dialogue through microarrays.