Probiotics, prebiotics and their role in Alzheimer's disease.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Valeria DArgenio, Daniela Sarnataro
{"title":"Probiotics, prebiotics and their role in Alzheimer's disease.","authors":"Valeria DArgenio, Daniela Sarnataro","doi":"10.4103/1673-5374.306072","DOIUrl":null,"url":null,"abstract":"Accumulation of amyloid and dysfunctional tau proteins in the brain, along with the development of dementia, characterizes Alzheimer ’s disease (AD). Although the cause of AD is currently unknown, i t has been shown that the onset of the disease, with amyloid-beta peptide (Aβ) accumulation, occurs 10–20 years before the development of the clinical signs; to date, several factors, including lifestyle habits (such as diet and exercise), chronic infection and inflammation, have been related to AD pathogenesis and progression (Sochocka et al., 2019). In addition, the gut microbial dysbiosis seems to be a critical feature able to characterize AD and regulate Aβ production. Indeed, imbalances in gut microbiota can induce aberrant immune responses which, in turn, can disrupt the local and systemic homeostasis of the host (Figure 1A). Moreover, it has been proposed that the gut microbiota, represented by intestinal microflora, may participate in the development of the disease through a network called “gut-brain axis,” that is a bidirectional signaling mechanism between the central nervous system and the intestinal tract. Gut has the largest nervous system, outside the central nervous system, that is in close interplay with the microbiome (MB), the other human genome. The extraordinary complexity of the intestinal ecosystem is represented by more than 100 trillion of microbial cells and their interaction with the intestinal epithelium can influence brain functionality and behavior. Likely, human MB is a promising target for prevention and therapeutic interventions. Indeed, several approaches have been employed with the aim to reduce age-related dysbiosis in both experimental model and in clinical studies. These include strategies to regulate MB via the administration of probiotics and prebiotics, and dietary interventions. The progress of research on the role of intestinal MB in the development of AD will dictate the future for the employment of proand prebiotics in the prevention/treatment of AD (D’Argenio and Sarnataro, 2019).","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"1768-1769"},"PeriodicalIF":8.3000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/82/6e/NRR-16-1768.PMC8328749.pdf","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/1673-5374.306072","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

Abstract

Accumulation of amyloid and dysfunctional tau proteins in the brain, along with the development of dementia, characterizes Alzheimer ’s disease (AD). Although the cause of AD is currently unknown, i t has been shown that the onset of the disease, with amyloid-beta peptide (Aβ) accumulation, occurs 10–20 years before the development of the clinical signs; to date, several factors, including lifestyle habits (such as diet and exercise), chronic infection and inflammation, have been related to AD pathogenesis and progression (Sochocka et al., 2019). In addition, the gut microbial dysbiosis seems to be a critical feature able to characterize AD and regulate Aβ production. Indeed, imbalances in gut microbiota can induce aberrant immune responses which, in turn, can disrupt the local and systemic homeostasis of the host (Figure 1A). Moreover, it has been proposed that the gut microbiota, represented by intestinal microflora, may participate in the development of the disease through a network called “gut-brain axis,” that is a bidirectional signaling mechanism between the central nervous system and the intestinal tract. Gut has the largest nervous system, outside the central nervous system, that is in close interplay with the microbiome (MB), the other human genome. The extraordinary complexity of the intestinal ecosystem is represented by more than 100 trillion of microbial cells and their interaction with the intestinal epithelium can influence brain functionality and behavior. Likely, human MB is a promising target for prevention and therapeutic interventions. Indeed, several approaches have been employed with the aim to reduce age-related dysbiosis in both experimental model and in clinical studies. These include strategies to regulate MB via the administration of probiotics and prebiotics, and dietary interventions. The progress of research on the role of intestinal MB in the development of AD will dictate the future for the employment of proand prebiotics in the prevention/treatment of AD (D’Argenio and Sarnataro, 2019).

Abstract Image

益生菌,益生元及其在阿尔茨海默病中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信