Quantum-State Control and Manipulation of Paramagnetic Molecules with Magnetic Fields.

IF 11.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Brianna R Heazlewood
{"title":"Quantum-State Control and Manipulation of Paramagnetic Molecules with Magnetic Fields.","authors":"Brianna R Heazlewood","doi":"10.1146/annurev-physchem-090419-053842","DOIUrl":null,"url":null,"abstract":"<p><p>Since external magnetic fields were first employed to deflect paramagnetic atoms in 1921, a range of magnetic field-based methods have been introduced to state-selectively manipulate paramagnetic species. These methods include magnetic guides, which selectively filter paramagnetic species from all other components of a beam, and magnetic traps, where paramagnetic species can be spatially confined for extended periods of time. However, many of these techniques were developed for atomic-rather than molecular-paramagnetic species. It has proven challenging to apply some of these experimental methods developed for atoms to paramagnetic molecules. Thanks to the emergence of new experimental approaches and new combinations of existing techniques, the past decade has seen significant progress toward the manipulation and control of paramagnetic molecules. This review identifies the key methods that have been implemented for the state-selective manipulation of paramagnetic molecules-discussing the motivation, state of the art, and future prospects of the field. Key applications include the ability to control chemical interactions, undertake precise spectroscopic measurements, and challenge our understanding of chemical reactivity at a fundamental level.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-090419-053842","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 8

Abstract

Since external magnetic fields were first employed to deflect paramagnetic atoms in 1921, a range of magnetic field-based methods have been introduced to state-selectively manipulate paramagnetic species. These methods include magnetic guides, which selectively filter paramagnetic species from all other components of a beam, and magnetic traps, where paramagnetic species can be spatially confined for extended periods of time. However, many of these techniques were developed for atomic-rather than molecular-paramagnetic species. It has proven challenging to apply some of these experimental methods developed for atoms to paramagnetic molecules. Thanks to the emergence of new experimental approaches and new combinations of existing techniques, the past decade has seen significant progress toward the manipulation and control of paramagnetic molecules. This review identifies the key methods that have been implemented for the state-selective manipulation of paramagnetic molecules-discussing the motivation, state of the art, and future prospects of the field. Key applications include the ability to control chemical interactions, undertake precise spectroscopic measurements, and challenge our understanding of chemical reactivity at a fundamental level.

具有磁场的顺磁分子的量子态控制和操纵。
自1921年首次使用外磁场来偏转顺磁原子以来,一系列基于磁场的方法被引入到状态选择性地操纵顺磁物种。这些方法包括磁导,它可以选择性地从光束的所有其他成分中过滤顺磁性物质,以及磁阱,其中顺磁性物质可以在空间上被限制很长一段时间。然而,这些技术中的许多都是针对原子而不是分子顺磁性物质而开发的。事实证明,将这些为原子开发的实验方法应用于顺磁性分子具有挑战性。由于新的实验方法和现有技术的新组合的出现,在过去的十年里,顺磁分子的操纵和控制取得了重大进展。这篇综述确定了顺磁分子的状态选择性操纵的关键方法,讨论了该领域的动机、技术状况和未来前景。关键应用包括控制化学相互作用的能力,进行精确的光谱测量,并在基础水平上挑战我们对化学反应性的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.00
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信