{"title":"The identification of novel promoters and terminators for protein expression and metabolic engineering applications in Kluyveromyces marxianus","authors":"Pradeep Kumar , Debendra Kumar Sahoo , Deepak Sharma","doi":"10.1016/j.mec.2020.e00160","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>K. marxianus</em> has emerged as a potential yeast strain for various biotechnological applications. However, the limited number of available genetic tools has hindered the widespread usage of this yeast. In the current study we have expanded the molecular tool box by identifying novel sets of promoters and terminators for increased recombinant protein expression in <em>K. marxianus</em>. The previously available transcriptomic data were analyzed to identify top 10 promoters of highest gene expression activity. We further characterized and compared strength of these identified promoters using eGFP as a reporter protein, at different temperatures and carbon sources. To examine the regulatory region driving protein expression, serially truncated shorter versions of two selected strong promoters were designed, and examined for their ability to drive eGFP protein expression. The activities of these two promoters were further enhanced using different combinations of native transcription terminators of <em>K. marxianus</em>. We further utilized the identified DNA cassette encoding strong promoter in metabolic engineering of <em>K. marxianus</em> for enhanced β-galactosidase activity. The present study thus provides novel sets of promoters and terminators as well as engineered <em>K. marxianus</em> strain for its wider utility in applications requiring lactose degradation such as in cheese whey and milk.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2020.e00160","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030120300602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
The K. marxianus has emerged as a potential yeast strain for various biotechnological applications. However, the limited number of available genetic tools has hindered the widespread usage of this yeast. In the current study we have expanded the molecular tool box by identifying novel sets of promoters and terminators for increased recombinant protein expression in K. marxianus. The previously available transcriptomic data were analyzed to identify top 10 promoters of highest gene expression activity. We further characterized and compared strength of these identified promoters using eGFP as a reporter protein, at different temperatures and carbon sources. To examine the regulatory region driving protein expression, serially truncated shorter versions of two selected strong promoters were designed, and examined for their ability to drive eGFP protein expression. The activities of these two promoters were further enhanced using different combinations of native transcription terminators of K. marxianus. We further utilized the identified DNA cassette encoding strong promoter in metabolic engineering of K. marxianus for enhanced β-galactosidase activity. The present study thus provides novel sets of promoters and terminators as well as engineered K. marxianus strain for its wider utility in applications requiring lactose degradation such as in cheese whey and milk.
期刊介绍:
Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.