Sławomir Zmonarski, Jakub Stojanowski, Joanna Zmonarska
{"title":"Polymers with antiviral properties: A brief review.","authors":"Sławomir Zmonarski, Jakub Stojanowski, Joanna Zmonarska","doi":"10.17219/pim/131643","DOIUrl":null,"url":null,"abstract":"<p><p>Viruses that are pathogenic to humans and livestock pose a serious epidemiological threat and challenge the world's population. The SARS-CoV-2/COVID-19 pandemic has made the world aware of the scale of the threat. The surfaces of various materials can be a source of viruses that remain temporarily contagious in the environment. Few polymers have antiviral effects that reduce infectivity or the presence of a virus in the human environment. Some of the effects are due to certain physical properties, e.g., high hydrophobicity. Other materials owe their antiviral activity to a modified physicochemical structure favoring the action on specific virus receptors or on their biochemistry. Current research areas include: gluten, polyvinylidene fluoride, polyimide, polylactic acid, graphene oxide, and polyurethane bound to copper oxide. The future belongs to multi-component mixtures or very thin multilayer systems. The rational direction of research work is the search for materials with a balanced specificity in relation to the most dangerous viruses and universality in relation to other viruses.</p>","PeriodicalId":20355,"journal":{"name":"Polimery w medycynie","volume":"50 2","pages":"79-82"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polimery w medycynie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17219/pim/131643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 4
Abstract
Viruses that are pathogenic to humans and livestock pose a serious epidemiological threat and challenge the world's population. The SARS-CoV-2/COVID-19 pandemic has made the world aware of the scale of the threat. The surfaces of various materials can be a source of viruses that remain temporarily contagious in the environment. Few polymers have antiviral effects that reduce infectivity or the presence of a virus in the human environment. Some of the effects are due to certain physical properties, e.g., high hydrophobicity. Other materials owe their antiviral activity to a modified physicochemical structure favoring the action on specific virus receptors or on their biochemistry. Current research areas include: gluten, polyvinylidene fluoride, polyimide, polylactic acid, graphene oxide, and polyurethane bound to copper oxide. The future belongs to multi-component mixtures or very thin multilayer systems. The rational direction of research work is the search for materials with a balanced specificity in relation to the most dangerous viruses and universality in relation to other viruses.