{"title":"Molecular Origins of Polymorphism in Cocoa Butter.","authors":"Saeed M Ghazani, Alejandro G Marangoni","doi":"10.1146/annurev-food-070620-022551","DOIUrl":null,"url":null,"abstract":"<p><p>Cocoa butter displays complex crystallization behavior and six crystal polymorphic forms. Although the crystal structure of cocoa butter has been studied extensively, the molecular interactions between cocoa butter triacylglycerols in relation to polymorphic transformations from metastable forms (forms III and IV) to stable crystal forms (forms V and VI) remain largely unknown. In this review, the triclinic polymorphism and melting profiles of the major triacylglycerols in cocoa butter-POP, POS, and SOS-are reviewed, and their binary and ternary phase behaviors in metastable (pseudoβ') and stable (β<sub>2</sub>) crystal forms are discussed. We also attempt to clarify how the transformation of cocoa butter from form IV to V, as a critical step in the tempering of chocolate, is controlled by POS interactions with both POP and SOS. Moreover, we show how the crystal forms V and VI of cocoa butter are templated by crystal forms β<sub>3</sub> and β<sub>1</sub> of POS, respectively.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"12 ","pages":"567-590"},"PeriodicalIF":10.6000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of food science and technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-food-070620-022551","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 15
Abstract
Cocoa butter displays complex crystallization behavior and six crystal polymorphic forms. Although the crystal structure of cocoa butter has been studied extensively, the molecular interactions between cocoa butter triacylglycerols in relation to polymorphic transformations from metastable forms (forms III and IV) to stable crystal forms (forms V and VI) remain largely unknown. In this review, the triclinic polymorphism and melting profiles of the major triacylglycerols in cocoa butter-POP, POS, and SOS-are reviewed, and their binary and ternary phase behaviors in metastable (pseudoβ') and stable (β2) crystal forms are discussed. We also attempt to clarify how the transformation of cocoa butter from form IV to V, as a critical step in the tempering of chocolate, is controlled by POS interactions with both POP and SOS. Moreover, we show how the crystal forms V and VI of cocoa butter are templated by crystal forms β3 and β1 of POS, respectively.
期刊介绍:
Since 2010, the Annual Review of Food Science and Technology has been a key source for current developments in the multidisciplinary field. The covered topics span food microbiology, food-borne pathogens, and fermentation; food engineering, chemistry, biochemistry, rheology, and sensory properties; novel ingredients and nutrigenomics; emerging technologies in food processing and preservation; and applications of biotechnology and nanomaterials in food systems.