Phoebe Ellis, Ferenc Somogyvári, Dezső P Virok, Michela Noseda, Gary R McLean
{"title":"Decoding Covid-19 with the SARS-CoV-2 Genome.","authors":"Phoebe Ellis, Ferenc Somogyvári, Dezső P Virok, Michela Noseda, Gary R McLean","doi":"10.1007/s40142-020-00197-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>SARS-CoV-2, the recently emerged coronavirus (CoV) that is responsible for the current global pandemic Covid-19, first appeared in late 2019 in Wuhan, China. Here, we summarise details of the SARS-CoV-2 genome to assist understanding of the emergence, evolution and diagnosis of this deadly new virus.</p><p><strong>Recent findings: </strong>Based on high similarities in the genome sequences, the virus is thought to have arisen from SARS-like CoVs in bats but the lack of an intermediate species containing a CoV with even greater similarity has so far eluded discovery. The critical determinant of the SARS-CoV-2 genome is the spike (S) gene encoding the viral structural protein that interacts with the host cell entry receptor ACE2. The S protein is sufficiently adapted to bind human ACE2 much more readily than SARS-CoV, the most closely related human CoV.</p><p><strong>Summary: </strong>Although the SARS-CoV-2 genome is undergoing subtle evolution in humans through mutation that may enhance transmission, there is limited evidence for attenuation that might weaken the virus. It is also still unclear as to the events that led to the virus' emergence from bats. Importantly, current diagnosis requires specific recognition and amplification of the SARS-CoV-2 RNA genome by qPCR, despite these ongoing viral genome changes. Alternative diagnostic procedures relying on immunoassay are becoming more prevalent.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40142-020-00197-5","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40142-020-00197-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 24
Abstract
Purpose of review: SARS-CoV-2, the recently emerged coronavirus (CoV) that is responsible for the current global pandemic Covid-19, first appeared in late 2019 in Wuhan, China. Here, we summarise details of the SARS-CoV-2 genome to assist understanding of the emergence, evolution and diagnosis of this deadly new virus.
Recent findings: Based on high similarities in the genome sequences, the virus is thought to have arisen from SARS-like CoVs in bats but the lack of an intermediate species containing a CoV with even greater similarity has so far eluded discovery. The critical determinant of the SARS-CoV-2 genome is the spike (S) gene encoding the viral structural protein that interacts with the host cell entry receptor ACE2. The S protein is sufficiently adapted to bind human ACE2 much more readily than SARS-CoV, the most closely related human CoV.
Summary: Although the SARS-CoV-2 genome is undergoing subtle evolution in humans through mutation that may enhance transmission, there is limited evidence for attenuation that might weaken the virus. It is also still unclear as to the events that led to the virus' emergence from bats. Importantly, current diagnosis requires specific recognition and amplification of the SARS-CoV-2 RNA genome by qPCR, despite these ongoing viral genome changes. Alternative diagnostic procedures relying on immunoassay are becoming more prevalent.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.