Charlotte Biebau, Adriana Dubbeldam, Lesley Cockmartin, Walter Coudyze, Johan Coolen, Johny Verschakelen, Walter De Wever
{"title":"Comparing Visual Scoring of Lung Injury with a Quantifying AI-Based Scoring in Patients with COVID-19.","authors":"Charlotte Biebau, Adriana Dubbeldam, Lesley Cockmartin, Walter Coudyze, Johan Coolen, Johny Verschakelen, Walter De Wever","doi":"10.5334/jbsr.2330","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Fast diagnosis of Coronavirus Disease 2019 (COVID-19), and the detection of high-risk patients are crucial but challenging in the pandemic outbreak. The aim of this study was to evaluate if deep learning-based software correlates well with the generally accepted visual-based scoring for quantification of the lung injury to help radiologist in triage and monitoring of COVID-19 patients.</p><p><strong>Materials and methods: </strong>In this retrospective study, the lobar analysis of lung opacities (% opacities) by means of a prototype deep learning artificial intelligence (AI)-based software was compared to visual scoring. The visual scoring system used five categories (0: 0%, 1: 0-5%, 2: 5-25%, 3: 25-50%, 4: 50-75% and 5: >75% involvement). The total visual lung injury was obtained by the sum of the estimated grade of involvement of each lobe and divided by five.</p><p><strong>Results: </strong>The dataset consisted of 182 consecutive confirmed COVID-19 positive patients with a median age of 65 ± 16 years, including 110 (60%) men and 72 (40%) women. There was a correlation coefficient of 0.89 (<i>p</i> < 0.001) between the visual and the AI-based estimates of the severity of lung injury.</p><p><strong>Conclusion: </strong>The study indicates a very good correlation between the visual scoring and AI-based estimates of lung injury in COVID-19.</p>","PeriodicalId":56282,"journal":{"name":"Journal of the Belgian Society of Radiology","volume":"105 1","pages":"16"},"PeriodicalIF":2.0000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034398/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Belgian Society of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5334/jbsr.2330","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Fast diagnosis of Coronavirus Disease 2019 (COVID-19), and the detection of high-risk patients are crucial but challenging in the pandemic outbreak. The aim of this study was to evaluate if deep learning-based software correlates well with the generally accepted visual-based scoring for quantification of the lung injury to help radiologist in triage and monitoring of COVID-19 patients.
Materials and methods: In this retrospective study, the lobar analysis of lung opacities (% opacities) by means of a prototype deep learning artificial intelligence (AI)-based software was compared to visual scoring. The visual scoring system used five categories (0: 0%, 1: 0-5%, 2: 5-25%, 3: 25-50%, 4: 50-75% and 5: >75% involvement). The total visual lung injury was obtained by the sum of the estimated grade of involvement of each lobe and divided by five.
Results: The dataset consisted of 182 consecutive confirmed COVID-19 positive patients with a median age of 65 ± 16 years, including 110 (60%) men and 72 (40%) women. There was a correlation coefficient of 0.89 (p < 0.001) between the visual and the AI-based estimates of the severity of lung injury.
Conclusion: The study indicates a very good correlation between the visual scoring and AI-based estimates of lung injury in COVID-19.
期刊介绍:
The purpose of the Journal of the Belgian Society of Radiology is the publication of articles dealing with diagnostic and interventional radiology, related imaging techniques, allied sciences, and continuing education.