{"title":"Required concentration index quantifies effective drug combinations against hepatitis C virus infection.","authors":"Yusuke Kakizoe, Yoshiki Koizumi, Yukino Ikoma, Hirofumi Ohashi, Takaji Wakita, Shingo Iwami, Koichi Watashi","doi":"10.1186/s12976-020-00135-6","DOIUrl":null,"url":null,"abstract":"<p><p>Successful clinical drug development requires rational design of combination treatments based on preclinical data. Anti-hepatitis C virus (HCV) drugs exhibit significant diversity in antiviral effect. Dose-response assessments can be used to determine parameters profiling the diverse antiviral effect during combination treatment. In the current study, a combined experimental and mathematical approaches were used to compare and score different combinations of anti-HCV treatments. A \"required concentration index\" was generated and used to rank the antiviral profile of possible double- and triple-drug combinations against HCV genotype 1b and 2a. Rankings varied based on target HCV genotype. Interestingly, multidrug (double and triple) treatment not only augmented antiviral activity, but also reduced genotype-specific efficacy, suggesting another advantage of multidrug treatment. The current study provides a quantitative method for profiling drug combinations against viral genotypes, to better inform clinical drug development.</p>","PeriodicalId":51195,"journal":{"name":"Theoretical Biology and Medical Modelling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12976-020-00135-6","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Biology and Medical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12976-020-00135-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
Successful clinical drug development requires rational design of combination treatments based on preclinical data. Anti-hepatitis C virus (HCV) drugs exhibit significant diversity in antiviral effect. Dose-response assessments can be used to determine parameters profiling the diverse antiviral effect during combination treatment. In the current study, a combined experimental and mathematical approaches were used to compare and score different combinations of anti-HCV treatments. A "required concentration index" was generated and used to rank the antiviral profile of possible double- and triple-drug combinations against HCV genotype 1b and 2a. Rankings varied based on target HCV genotype. Interestingly, multidrug (double and triple) treatment not only augmented antiviral activity, but also reduced genotype-specific efficacy, suggesting another advantage of multidrug treatment. The current study provides a quantitative method for profiling drug combinations against viral genotypes, to better inform clinical drug development.
期刊介绍:
Theoretical Biology and Medical Modelling is an open access peer-reviewed journal adopting a broad definition of "biology" and focusing on theoretical ideas and models associated with developments in biology and medicine. Mathematicians, biologists and clinicians of various specialisms, philosophers and historians of science are all contributing to the emergence of novel concepts in an age of systems biology, bioinformatics and computer modelling. This is the field in which Theoretical Biology and Medical Modelling operates. We welcome submissions that are technically sound and offering either improved understanding in biology and medicine or progress in theory or method.