{"title":"<i>In Silico</i> ADME, Metabolism Prediction and Hydrolysis Study of Melatonin Derivatives.","authors":"Panyada Panyatip, Nadtanet Nunthaboot, Ploenthip Puthongking","doi":"10.1177/1178646920978245","DOIUrl":null,"url":null,"abstract":"<p><p>Melatonin (MLT) is a well-known pineal hormone possessed with remarkable biological activities. However, its low oral bioavailability and high first-pass metabolism rate are important pharmacokinetics problems. Therefore, 5 MLT derivatives (<b>1</b>-<b>5</b>) were designed and synthesised in our group to solve these problems. In this work, <i>in silico</i> analysis of all synthetic derivatives for pharmacokinetic and drug-likeness parameters were predicted by SwissADME software. The results revealed that all derivatives (<b>1</b>-<b>5</b>) met the requirements for ideal oral bioavailability and CNS drugs. The molecular docking showed that the acetyl-MLT derivative (<b>1</b>) and the un-substitution at <i>N1</i>-position derivative <b>5</b> would be substrates of CYP1A2, while the lipophilic substituted <i>N1</i>-position derivatives <b>2</b>-<b>4</b> could not be metabolised by CYP1A2. Moreover, all <i>N</i>-amide derivatives (<b>1</b>-<b>4</b>) were hydrolysed and released less than 2.33% MLT after 4-hour incubation in 80% human plasma. It seemed that these derivatives preferred to behave like drugs rather than prodrugs of MLT. These findings confirmed that the addition of bulky groups at the <i>N1</i>-position of the MLT core could prolong the half-life, increase drug absorption and penetrate the blood brain barrier into the CNS.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"13 ","pages":"1178646920978245"},"PeriodicalIF":2.7000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1178646920978245","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Tryptophan Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1178646920978245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
Melatonin (MLT) is a well-known pineal hormone possessed with remarkable biological activities. However, its low oral bioavailability and high first-pass metabolism rate are important pharmacokinetics problems. Therefore, 5 MLT derivatives (1-5) were designed and synthesised in our group to solve these problems. In this work, in silico analysis of all synthetic derivatives for pharmacokinetic and drug-likeness parameters were predicted by SwissADME software. The results revealed that all derivatives (1-5) met the requirements for ideal oral bioavailability and CNS drugs. The molecular docking showed that the acetyl-MLT derivative (1) and the un-substitution at N1-position derivative 5 would be substrates of CYP1A2, while the lipophilic substituted N1-position derivatives 2-4 could not be metabolised by CYP1A2. Moreover, all N-amide derivatives (1-4) were hydrolysed and released less than 2.33% MLT after 4-hour incubation in 80% human plasma. It seemed that these derivatives preferred to behave like drugs rather than prodrugs of MLT. These findings confirmed that the addition of bulky groups at the N1-position of the MLT core could prolong the half-life, increase drug absorption and penetrate the blood brain barrier into the CNS.