{"title":"Analysis of human satellite cell dynamics on cultured adult skeletal muscle myofibers.","authors":"Peter Feige, Eve C Tsai, Michael A Rudnicki","doi":"10.1186/s13395-020-00256-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Maintaining stem cells in physiologically relevant states is necessary to understand cell and context-specific signalling paradigms and to understand complex interfaces between cells in situ. Understanding human stem cell function is largely based on tissue biopsies, cell culture, and transplantation into model organisms.</p><p><strong>Methods: </strong>Here, we describe a method to isolate post-mortem intact human muscle myofibers and culture muscle stem cells within the niche microenvironment to assay cellular dynamics, stem cell identity, stem cell hierarchy, and differentiation potential.</p><p><strong>Results: </strong>We show human myofiber culture maintains complex cell-cell contacts and extracellular niche composition during culture. Human satellite cells can be cultured at least 8 days, which represents a timepoint of activation, differentiation, and de novo human myofiber formation. We demonstrate that adult human muscle stem cells undergo apicobasal and planar cell divisions and express polarized dystrophin and EGFR. Furthermore, we validate that stimulation of the EGFR pathway stimulates the generation of myogenic progenitors and myogenic differentiation.</p><p><strong>Conclusions: </strong>This method provides proof of principle evidence for the use of human muscle to evaluate satellite cell dynamics and has applications in pre-clinical evaluation of therapeutics targeting muscle repair.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780694/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skeletal Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13395-020-00256-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Maintaining stem cells in physiologically relevant states is necessary to understand cell and context-specific signalling paradigms and to understand complex interfaces between cells in situ. Understanding human stem cell function is largely based on tissue biopsies, cell culture, and transplantation into model organisms.
Methods: Here, we describe a method to isolate post-mortem intact human muscle myofibers and culture muscle stem cells within the niche microenvironment to assay cellular dynamics, stem cell identity, stem cell hierarchy, and differentiation potential.
Results: We show human myofiber culture maintains complex cell-cell contacts and extracellular niche composition during culture. Human satellite cells can be cultured at least 8 days, which represents a timepoint of activation, differentiation, and de novo human myofiber formation. We demonstrate that adult human muscle stem cells undergo apicobasal and planar cell divisions and express polarized dystrophin and EGFR. Furthermore, we validate that stimulation of the EGFR pathway stimulates the generation of myogenic progenitors and myogenic differentiation.
Conclusions: This method provides proof of principle evidence for the use of human muscle to evaluate satellite cell dynamics and has applications in pre-clinical evaluation of therapeutics targeting muscle repair.
期刊介绍:
The only open access journal in its field, Skeletal Muscle publishes novel, cutting-edge research and technological advancements that investigate the molecular mechanisms underlying the biology of skeletal muscle. Reflecting the breadth of research in this area, the journal welcomes manuscripts about the development, metabolism, the regulation of mass and function, aging, degeneration, dystrophy and regeneration of skeletal muscle, with an emphasis on understanding adult skeletal muscle, its maintenance, and its interactions with non-muscle cell types and regulatory modulators.
Main areas of interest include:
-differentiation of skeletal muscle-
atrophy and hypertrophy of skeletal muscle-
aging of skeletal muscle-
regeneration and degeneration of skeletal muscle-
biology of satellite and satellite-like cells-
dystrophic degeneration of skeletal muscle-
energy and glucose homeostasis in skeletal muscle-
non-dystrophic genetic diseases of skeletal muscle, such as Spinal Muscular Atrophy and myopathies-
maintenance of neuromuscular junctions-
roles of ryanodine receptors and calcium signaling in skeletal muscle-
roles of nuclear receptors in skeletal muscle-
roles of GPCRs and GPCR signaling in skeletal muscle-
other relevant aspects of skeletal muscle biology.
In addition, articles on translational clinical studies that address molecular and cellular mechanisms of skeletal muscle will be published. Case reports are also encouraged for submission.
Skeletal Muscle reflects the breadth of research on skeletal muscle and bridges gaps between diverse areas of science for example cardiac cell biology and neurobiology, which share common features with respect to cell differentiation, excitatory membranes, cell-cell communication, and maintenance. Suitable articles are model and mechanism-driven, and apply statistical principles where appropriate; purely descriptive studies are of lesser interest.