{"title":"[Role of astrocytic connexins in the regulation of extracellular glutamate levels: implication for the treatment of major depressive episodes].","authors":"Benjamin Portal, Bruno P Guiard","doi":"10.1051/jbio/2020008","DOIUrl":null,"url":null,"abstract":"<p><p>Major depression is a psychiatric disorder relying on different neurobiological mechanisms. In particular, a hypersensitivity of the hypothalamic-pituitary-adrenal axis leading to an excess of cortisol in blood and a deficit in monoaminergic neurotransmission have been associated with mood disorders. In keeping with these mechanisms, currently available antidepressant drugs act by increasing the extracellular levels of monoamines in the synaptic cleft. Since the discovery of the rapid and long-lasting antidepressant effects of ketamine, an NMDA receptor antagonist, a growing attention in psychiatry is paid to the pharmacological tools able to attenuate glutamatergic neurotransmission. Astrocytes play an important role in the excitatory/inhibitory balance of the central nervous system through the regulation of glutamate reuptake and secretion. Interestingly, the release of this excitatory amino acid is controlled, at least in part, by plasma membrane proteins (i.e. connexins) that cluster together to form gap junctions or hemichannels. Preclinical evidence suggests that these functional entities play a critical role in emotional behaviour. After a brief overview of the literature on mood disorders and related treatments, this review describes the role of astrocytes and connexins in glutamatergic neurotransmission and major depression. Moreover, we highlight the arguments supporting the therapeutic potential of connexins blockers but also the practical difficulties to target the hemichannels while maintaining gap junctions intact.</p>","PeriodicalId":39068,"journal":{"name":"Biologie Aujourd''hui","volume":"214 3-4","pages":"71-83"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologie Aujourd''hui","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/jbio/2020008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Major depression is a psychiatric disorder relying on different neurobiological mechanisms. In particular, a hypersensitivity of the hypothalamic-pituitary-adrenal axis leading to an excess of cortisol in blood and a deficit in monoaminergic neurotransmission have been associated with mood disorders. In keeping with these mechanisms, currently available antidepressant drugs act by increasing the extracellular levels of monoamines in the synaptic cleft. Since the discovery of the rapid and long-lasting antidepressant effects of ketamine, an NMDA receptor antagonist, a growing attention in psychiatry is paid to the pharmacological tools able to attenuate glutamatergic neurotransmission. Astrocytes play an important role in the excitatory/inhibitory balance of the central nervous system through the regulation of glutamate reuptake and secretion. Interestingly, the release of this excitatory amino acid is controlled, at least in part, by plasma membrane proteins (i.e. connexins) that cluster together to form gap junctions or hemichannels. Preclinical evidence suggests that these functional entities play a critical role in emotional behaviour. After a brief overview of the literature on mood disorders and related treatments, this review describes the role of astrocytes and connexins in glutamatergic neurotransmission and major depression. Moreover, we highlight the arguments supporting the therapeutic potential of connexins blockers but also the practical difficulties to target the hemichannels while maintaining gap junctions intact.