A Paradigm to Discover Biomarkers Associated With Chronic Kidney Disease Progression.

IF 3.4 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Biomarker Insights Pub Date : 2020-12-01 eCollection Date: 2020-01-01 DOI:10.1177/1177271920976146
Ibrahim Ali, Sara T Ibrahim, Rajkumar Chinnadurai, Darren Green, Maarten Taal, Tony D Whetton, Philip A Kalra
{"title":"A Paradigm to Discover Biomarkers Associated With Chronic Kidney Disease Progression.","authors":"Ibrahim Ali,&nbsp;Sara T Ibrahim,&nbsp;Rajkumar Chinnadurai,&nbsp;Darren Green,&nbsp;Maarten Taal,&nbsp;Tony D Whetton,&nbsp;Philip A Kalra","doi":"10.1177/1177271920976146","DOIUrl":null,"url":null,"abstract":"<p><p>Biomarker discovery in the field of risk prediction in chronic kidney disease (CKD) embraces the prospect of improving our ability to risk stratify future adverse outcomes and thereby guide patient care in a new era of personalised medicine. However, many studies that report biomarkers predictive of CKD progression share a key methodological limitation: failure to characterise patients' renal progression precisely. This weakens any observable association between a biomarker and an outcome poorly defined by a patient's change in renal function over time. In this commentary, we discuss the need for a better approach in this research arena and describe a compelling strategy that has the advantage of offering robust and meaningful biomarker exploration relevant to CKD progression.</p>","PeriodicalId":47060,"journal":{"name":"Biomarker Insights","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1177271920976146","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarker Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1177271920976146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Biomarker discovery in the field of risk prediction in chronic kidney disease (CKD) embraces the prospect of improving our ability to risk stratify future adverse outcomes and thereby guide patient care in a new era of personalised medicine. However, many studies that report biomarkers predictive of CKD progression share a key methodological limitation: failure to characterise patients' renal progression precisely. This weakens any observable association between a biomarker and an outcome poorly defined by a patient's change in renal function over time. In this commentary, we discuss the need for a better approach in this research arena and describe a compelling strategy that has the advantage of offering robust and meaningful biomarker exploration relevant to CKD progression.

Abstract Image

Abstract Image

Abstract Image

发现与慢性肾脏疾病进展相关的生物标志物的范例。
慢性肾脏疾病(CKD)风险预测领域的生物标志物发现,有望提高我们对未来不良后果进行风险分层的能力,从而在个性化医疗的新时代指导患者护理。然而,许多报告CKD进展的生物标志物的研究都有一个关键的方法局限性:无法准确表征患者肾脏进展。这削弱了任何可观察到的生物标志物与患者肾功能随时间变化所定义的预后之间的关联。在这篇评论中,我们讨论了在这一研究领域需要一种更好的方法,并描述了一种令人信服的策略,该策略具有提供与CKD进展相关的可靠且有意义的生物标志物探索的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomarker Insights
Biomarker Insights MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
6.00
自引率
0.00%
发文量
26
审稿时长
8 weeks
期刊介绍: An open access, peer reviewed electronic journal that covers all aspects of biomarker research and clinical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信