Neural field models with transmission delays and diffusion.

IF 2.3 4区 医学 Q1 Neuroscience
Len Spek, Yuri A Kuznetsov, Stephan A van Gils
{"title":"Neural field models with transmission delays and diffusion.","authors":"Len Spek,&nbsp;Yuri A Kuznetsov,&nbsp;Stephan A van Gils","doi":"10.1186/s13408-020-00098-5","DOIUrl":null,"url":null,"abstract":"<p><p>A neural field models the large scale behaviour of large groups of neurons. We extend previous results for these models by including a diffusion term into the neural field, which models direct, electrical connections. We extend known and prove new sun-star calculus results for delay equations to be able to include diffusion and explicitly characterise the essential spectrum. For a certain class of connectivity functions in the neural field model, we are able to compute its spectral properties and the first Lyapunov coefficient of a Hopf bifurcation. By examining a numerical example, we find that the addition of diffusion suppresses non-synchronised steady-states while favouring synchronised oscillatory modes.</p>","PeriodicalId":54271,"journal":{"name":"Journal of Mathematical Neuroscience","volume":" ","pages":"21"},"PeriodicalIF":2.3000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13408-020-00098-5","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13408-020-00098-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 8

Abstract

A neural field models the large scale behaviour of large groups of neurons. We extend previous results for these models by including a diffusion term into the neural field, which models direct, electrical connections. We extend known and prove new sun-star calculus results for delay equations to be able to include diffusion and explicitly characterise the essential spectrum. For a certain class of connectivity functions in the neural field model, we are able to compute its spectral properties and the first Lyapunov coefficient of a Hopf bifurcation. By examining a numerical example, we find that the addition of diffusion suppresses non-synchronised steady-states while favouring synchronised oscillatory modes.

Abstract Image

Abstract Image

Abstract Image

具有传递延迟和扩散的神经场模型。
神经场模拟大量神经元的大规模行为。我们通过在神经领域中加入一个扩散项来扩展这些模型的先前结果,该扩散项模拟了直接的电连接。我们扩展并证明了新的太阳-恒星演算结果的延迟方程,能够包括扩散和明确表征本质谱。对于神经场模型中的一类连通性函数,我们能够计算其谱性质和Hopf分岔的第一Lyapunov系数。通过一个数值例子,我们发现扩散的加入抑制了非同步的稳态,而有利于同步的振荡模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Neuroscience
Journal of Mathematical Neuroscience Neuroscience-Neuroscience (miscellaneous)
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: The Journal of Mathematical Neuroscience (JMN) publishes research articles on the mathematical modeling and analysis of all areas of neuroscience, i.e., the study of the nervous system and its dysfunctions. The focus is on using mathematics as the primary tool for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience at all relevant scales, from the molecular world to that of cognition. The aim is to publish work that uses advanced mathematical techniques to illuminate these questions. It publishes full length original papers, rapid communications and review articles. Papers that combine theoretical results supported by convincing numerical experiments are especially encouraged. Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous system in general and the human brain in particular are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信