{"title":"ABCB1/MDR1/P-gp employs an ATP-dependent twist-and-squeeze mechanism to export hydrophobic drugs.","authors":"Atsushi Kodan, Ryota Futamata, Yasuhisa Kimura, Noriyuki Kioka, Toru Nakatsu, Hiroaki Kato, Kazumitsu Ueda","doi":"10.1002/1873-3468.14018","DOIUrl":null,"url":null,"abstract":"<p><p>ABCB1, also called MDR1 or P-glycoprotein, exports various hydrophobic compounds and plays an essential role as a protective physiological barrier in several organs, including the brain, testis, and placenta. However, little is known about the structural mechanisms that allow ABCB1 to recognize hydrophobic compounds of diverse structures or the coupling of ATP hydrolysis to uphill substrate export. High-resolution X-ray crystal structures of the pre- and post-transport states and FRET analyses in living cells have revealed that an aromatic hydrophobic network at the top of the inner cavity is key for the conformational change in ABCB1 that is triggered by a hydrophobic substrate. ATP binding, but not hydrolysis, induces a progressive network that results in a twisting motion of the whole protein, squeezing out the substrate directly to the extracellular space. This twist-and-squeeze mechanism by which ABCB1 exports hydrophobic substrates is distinct from those of other transporters.</p>","PeriodicalId":50454,"journal":{"name":"FEBS Letters","volume":"595 6","pages":"707-716"},"PeriodicalIF":3.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1873-3468.14018","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.14018","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 21
Abstract
ABCB1, also called MDR1 or P-glycoprotein, exports various hydrophobic compounds and plays an essential role as a protective physiological barrier in several organs, including the brain, testis, and placenta. However, little is known about the structural mechanisms that allow ABCB1 to recognize hydrophobic compounds of diverse structures or the coupling of ATP hydrolysis to uphill substrate export. High-resolution X-ray crystal structures of the pre- and post-transport states and FRET analyses in living cells have revealed that an aromatic hydrophobic network at the top of the inner cavity is key for the conformational change in ABCB1 that is triggered by a hydrophobic substrate. ATP binding, but not hydrolysis, induces a progressive network that results in a twisting motion of the whole protein, squeezing out the substrate directly to the extracellular space. This twist-and-squeeze mechanism by which ABCB1 exports hydrophobic substrates is distinct from those of other transporters.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.