Clementine M. Boutry, Marc Negre, Mikael Jorda, Orestis Vardoulis, Alex Chortos, Oussama Khatib, Zhenan Bao
{"title":"A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics","authors":"Clementine M. Boutry, Marc Negre, Mikael Jorda, Orestis Vardoulis, Alex Chortos, Oussama Khatib, Zhenan Bao","doi":"10.1126/scirobotics.aau6914","DOIUrl":null,"url":null,"abstract":"<div >Tactile sensing is required for the dexterous manipulation of objects in robotic applications. In particular, the ability to measure and distinguish in real time normal and shear forces is crucial for slip detection and interaction with fragile objects. Here, we report a biomimetic soft electronic skin (e-skin) that is composed of an array of capacitors and capable of measuring and discriminating in real time both normal and tangential forces. It is enabled by a three-dimensional structure that mimics the interlocked dermis-epidermis interface in human skin. Moreover, pyramid microstructures arranged along nature-inspired phyllotaxis spirals resulted in an e-skin with increased sensitivity, minimal hysteresis, excellent cycling stability, and response time in the millisecond range. The e-skin provided sensing feedback for controlling a robot arm in various tasks, illustrating its potential application in robotics with tactile feedback.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"3 24","pages":""},"PeriodicalIF":26.1000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1126/scirobotics.aau6914","citationCount":"459","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.aau6914","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 459
Abstract
Tactile sensing is required for the dexterous manipulation of objects in robotic applications. In particular, the ability to measure and distinguish in real time normal and shear forces is crucial for slip detection and interaction with fragile objects. Here, we report a biomimetic soft electronic skin (e-skin) that is composed of an array of capacitors and capable of measuring and discriminating in real time both normal and tangential forces. It is enabled by a three-dimensional structure that mimics the interlocked dermis-epidermis interface in human skin. Moreover, pyramid microstructures arranged along nature-inspired phyllotaxis spirals resulted in an e-skin with increased sensitivity, minimal hysteresis, excellent cycling stability, and response time in the millisecond range. The e-skin provided sensing feedback for controlling a robot arm in various tasks, illustrating its potential application in robotics with tactile feedback.
期刊介绍:
Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals.
Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.