ICRP Publication 144: Dose Coefficients for External Exposures to Environmental Sources.

N Petoussi-Henss, D Satoh, A Endo, K F Eckerman, W E Bolch, J Hunt, J T M Jansen, C H Kim, C Lee, K Saito, H Schlattl, Y S Yeom, S J Yoo
{"title":"ICRP Publication 144: Dose Coefficients for External Exposures to Environmental Sources.","authors":"N Petoussi-Henss, D Satoh, A Endo, K F Eckerman, W E Bolch, J Hunt, J T M Jansen, C H Kim, C Lee, K Saito, H Schlattl, Y S Yeom, S J Yoo","doi":"10.1177/0146645320906277","DOIUrl":null,"url":null,"abstract":"This publication presents radionuclide-specific organ and effective doserate coefficients for members of the public resulting from environmental external exposures to radionuclide emissions of both photons and electrons, calculated using computational phantoms representing the International Commission on Radiological Protection’s (ICRP) reference newborn, 1-year-old, 5-year-old, 10year-old, 15-year-old, and adult males and females. Environmental radiation fields of monoenergetic photon and electron sources were first computed using the Monte Carlo radiation transport code PHITS for source geometries representing environmental radionuclide exposures including planar sources on and within the ground at different depths (representing radionuclide ground contamination from fallout or naturally occurring terrestrial sources), volumetric sources in air (representing a radioactive cloud), and uniformly distributed sources in simulated contaminated water. For the above geometries, the exposed reference individual is considered to be completely within the radiation field. Organ equivalent dose-rate coefficients for monoenergetic photons and electrons were next computed employing the PHITS code, thus simulating photon and electron interactions within the tissues and organs of the exposed reference individual. For quality assurance purposes, further cross-check calculations were performed using GEANT4, EGSnrc, MCNPX, MCNP6, and the Visible Monte Carlo radiation transport codes. From the monoenergetic values, nuclide-specific effective and organ equivalent dose-rate coefficients were computed for 1252 radionuclides of 97 elements for the above environmental exposures using the nuclear decay data from ICRP Publication 107. The coefficients are given as dose-rates normalised to radionuclide concentrations in environmental media, such as radioactivity concentration (nSv h Bq m or nSv h Bq m), and can be renormalised to ambient dose equivalent (Sv Sv ) or air kerma free in air (SvGy ). The main text provides effective dose-rate coefficients for selected radionuclides; details including ageand sex-dependent organ dose-rate coefficients are provided as an electronic supplement to be downloaded from the ICRP and SAGE websites. The data show that, in general, the smaller the body mass of the","PeriodicalId":39551,"journal":{"name":"Annals of the ICRP","volume":"49 2","pages":"11-145"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0146645320906277","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the ICRP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0146645320906277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

This publication presents radionuclide-specific organ and effective doserate coefficients for members of the public resulting from environmental external exposures to radionuclide emissions of both photons and electrons, calculated using computational phantoms representing the International Commission on Radiological Protection’s (ICRP) reference newborn, 1-year-old, 5-year-old, 10year-old, 15-year-old, and adult males and females. Environmental radiation fields of monoenergetic photon and electron sources were first computed using the Monte Carlo radiation transport code PHITS for source geometries representing environmental radionuclide exposures including planar sources on and within the ground at different depths (representing radionuclide ground contamination from fallout or naturally occurring terrestrial sources), volumetric sources in air (representing a radioactive cloud), and uniformly distributed sources in simulated contaminated water. For the above geometries, the exposed reference individual is considered to be completely within the radiation field. Organ equivalent dose-rate coefficients for monoenergetic photons and electrons were next computed employing the PHITS code, thus simulating photon and electron interactions within the tissues and organs of the exposed reference individual. For quality assurance purposes, further cross-check calculations were performed using GEANT4, EGSnrc, MCNPX, MCNP6, and the Visible Monte Carlo radiation transport codes. From the monoenergetic values, nuclide-specific effective and organ equivalent dose-rate coefficients were computed for 1252 radionuclides of 97 elements for the above environmental exposures using the nuclear decay data from ICRP Publication 107. The coefficients are given as dose-rates normalised to radionuclide concentrations in environmental media, such as radioactivity concentration (nSv h Bq m or nSv h Bq m), and can be renormalised to ambient dose equivalent (Sv Sv ) or air kerma free in air (SvGy ). The main text provides effective dose-rate coefficients for selected radionuclides; details including ageand sex-dependent organ dose-rate coefficients are provided as an electronic supplement to be downloaded from the ICRP and SAGE websites. The data show that, in general, the smaller the body mass of the
ICRP出版物144:环境源外部照射的剂量系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of the ICRP
Annals of the ICRP Medicine-Public Health, Environmental and Occupational Health
CiteScore
4.10
自引率
0.00%
发文量
3
期刊介绍: The International Commission on Radiological Protection was founded in 1928 to advance for the public benefit the science of radiological protection. The ICRP provides recommendations and guidance on protection against the risks associated with ionising radiation, from artificial sources as widely used in medicine, general industry and nuclear enterprises, and from naturally occurring sources. These reports and recommendations are published six times each year on behalf of the ICRP as the journal Annals of the ICRP. Each issue provides in-depth coverage of a specific subject area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信