Temporal scatterplots.

IF 17.3 3区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Computational Visual Media Pub Date : 2020-01-01 Epub Date: 2020-11-07 DOI:10.1007/s41095-020-0197-1
Or Patashnik, Min Lu, Amit H Bermano, Daniel Cohen-Or
{"title":"Temporal scatterplots.","authors":"Or Patashnik,&nbsp;Min Lu,&nbsp;Amit H Bermano,&nbsp;Daniel Cohen-Or","doi":"10.1007/s41095-020-0197-1","DOIUrl":null,"url":null,"abstract":"<p><p>Visualizing high-dimensional data on a 2D canvas is generally challenging. It becomes significantly more difficult when multiple time-steps are to be presented, as the visual clutter quickly increases. Moreover, the challenge to perceive the significant temporal evolution is even greater. In this paper, we present a method to plot temporal high-dimensional data in a static scatterplot; it uses the established PCA technique to project data from multiple time-steps. The key idea is to extend each individual displacement prior to applying PCA, so as to skew the projection process, and to set a projection plane that balances the directions of temporal change and spatial variance. We present numerous examples and various visual cues to highlight the data trajectories, and demonstrate the effectiveness of the method for visualizing temporal data.</p>","PeriodicalId":37301,"journal":{"name":"Computational Visual Media","volume":"6 4","pages":"385-400"},"PeriodicalIF":17.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41095-020-0197-1","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Visual Media","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s41095-020-0197-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1

Abstract

Visualizing high-dimensional data on a 2D canvas is generally challenging. It becomes significantly more difficult when multiple time-steps are to be presented, as the visual clutter quickly increases. Moreover, the challenge to perceive the significant temporal evolution is even greater. In this paper, we present a method to plot temporal high-dimensional data in a static scatterplot; it uses the established PCA technique to project data from multiple time-steps. The key idea is to extend each individual displacement prior to applying PCA, so as to skew the projection process, and to set a projection plane that balances the directions of temporal change and spatial variance. We present numerous examples and various visual cues to highlight the data trajectories, and demonstrate the effectiveness of the method for visualizing temporal data.

时间散点图。
在2D画布上可视化高维数据通常具有挑战性。当要呈现多个时间步长时,这会变得非常困难,因为视觉混乱会迅速增加。此外,感知重要的时间演变的挑战甚至更大。本文提出了一种在静态散点图中绘制时间高维数据的方法;它使用已建立的PCA技术从多个时间步长投影数据。关键思想是在应用PCA之前对每个个体位移进行扩展,从而使投影过程倾斜,并设置一个平衡时间变化方向和空间方差方向的投影平面。我们提供了许多例子和各种视觉线索来突出数据轨迹,并展示了可视化时间数据方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Visual Media
Computational Visual Media Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
16.90
自引率
5.80%
发文量
243
审稿时长
6 weeks
期刊介绍: Computational Visual Media is a peer-reviewed open access journal. It publishes original high-quality research papers and significant review articles on novel ideas, methods, and systems relevant to visual media. Computational Visual Media publishes articles that focus on, but are not limited to, the following areas: • Editing and composition of visual media • Geometric computing for images and video • Geometry modeling and processing • Machine learning for visual media • Physically based animation • Realistic rendering • Recognition and understanding of visual media • Visual computing for robotics • Visualization and visual analytics Other interdisciplinary research into visual media that combines aspects of computer graphics, computer vision, image and video processing, geometric computing, and machine learning is also within the journal''s scope. This is an open access journal, published quarterly by Tsinghua University Press and Springer. The open access fees (article-processing charges) are fully sponsored by Tsinghua University, China. Authors can publish in the journal without any additional charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信