{"title":"DNA rearrangement on the octadecylamine modified graphite surface by heating and ultrasonic treatment.","authors":"Xiaolu Xiong, Junfeng Han, Yu Chen, Shanshan Li, Wende Xiao, Qingfan Shi","doi":"10.1088/1361-6528/abb507","DOIUrl":null,"url":null,"abstract":"<p><p>The evolution of single-stranded DNA (ssDNA) assembly on octadecylamine (ODA) modified highly oriented pyrolytic graphite (HOPG) surface by heating and ultrasonic treatment has been studied for the first time. We have observed that DNA on the ODA coated HOPG surface underwent dramatic morphological changes as a function of heating and ultrasonic treatment. Ordered DNA firstly changed to random aggregates by heating and then changed to three-dimensional (3D) networks by ultrasonic treatment. This finding points to previously unknown factors that impact graphite-DNA interaction and opens new opportunities to control the deposition of DNA onto graphitic substrates. In this way, we built a cost-effective method to produce large-scale 3D ssDNA networks. All of these studies pave the way to understand the properties of DNA-solid interface, design novel nanomaterials, and improve the sensitivity of DNA biosensors.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":"32 5","pages":"055601"},"PeriodicalIF":2.9000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/abb507","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
The evolution of single-stranded DNA (ssDNA) assembly on octadecylamine (ODA) modified highly oriented pyrolytic graphite (HOPG) surface by heating and ultrasonic treatment has been studied for the first time. We have observed that DNA on the ODA coated HOPG surface underwent dramatic morphological changes as a function of heating and ultrasonic treatment. Ordered DNA firstly changed to random aggregates by heating and then changed to three-dimensional (3D) networks by ultrasonic treatment. This finding points to previously unknown factors that impact graphite-DNA interaction and opens new opportunities to control the deposition of DNA onto graphitic substrates. In this way, we built a cost-effective method to produce large-scale 3D ssDNA networks. All of these studies pave the way to understand the properties of DNA-solid interface, design novel nanomaterials, and improve the sensitivity of DNA biosensors.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.