{"title":"Intraductal Injection of Lentivirus Vectors for Stably Introducing Genes into Rat Mammary Epithelial Cells in Vivo.","authors":"Wen Bu, Yi Li","doi":"10.1007/s10911-020-09469-w","DOIUrl":null,"url":null,"abstract":"<p><p>Various retroviral and lentiviral vectors have been used for up-the-teat intraductal injection to deliver markers, oncogenes, and other genes into mammary epithelial cells in mice. These methods along with the large number of genetically engineered mouse lines have greatly helped us learn normal breast development and tumorigenesis. Rats are also valuable models for studying human breast development and cancer. However, genetically engineered rats are still uncommon, and previous reports of intraductal injection of retroviral vectors into rats appear to be inefficient in generating mammary tumors. Here, we report, and describe the method for, stably introducing marker genes and oncogenes into mammary glands in rats using intraductal injection of commonly used lentiviral vectors. This method can infect mammary epithelial cells efficiently, and the infected cells can initiate tumorigenesis, including estrogen receptor-positive and hormone-dependent tumors, which are the most common subtype of human breast cancer but are yet still difficult to model in mice. This technique provides another tool for studying formation, prevention, and treatment of breast cancer, especially estrogen receptor-positive breast cancer.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"25 4","pages":"389-396"},"PeriodicalIF":3.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10911-020-09469-w","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mammary Gland Biology and Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10911-020-09469-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 7
Abstract
Various retroviral and lentiviral vectors have been used for up-the-teat intraductal injection to deliver markers, oncogenes, and other genes into mammary epithelial cells in mice. These methods along with the large number of genetically engineered mouse lines have greatly helped us learn normal breast development and tumorigenesis. Rats are also valuable models for studying human breast development and cancer. However, genetically engineered rats are still uncommon, and previous reports of intraductal injection of retroviral vectors into rats appear to be inefficient in generating mammary tumors. Here, we report, and describe the method for, stably introducing marker genes and oncogenes into mammary glands in rats using intraductal injection of commonly used lentiviral vectors. This method can infect mammary epithelial cells efficiently, and the infected cells can initiate tumorigenesis, including estrogen receptor-positive and hormone-dependent tumors, which are the most common subtype of human breast cancer but are yet still difficult to model in mice. This technique provides another tool for studying formation, prevention, and treatment of breast cancer, especially estrogen receptor-positive breast cancer.
期刊介绍:
Journal of Mammary Gland Biology and Neoplasia is the leading Journal in the field of mammary gland biology that provides researchers within and outside the field of mammary gland biology with an integrated source of information pertaining to the development, function, and pathology of the mammary gland and its function.
Commencing in 2015, the Journal will begin receiving and publishing a combination of reviews and original, peer-reviewed research. The Journal covers all topics related to the field of mammary gland biology, including mammary development, breast cancer biology, lactation, and milk composition and quality. The environmental, endocrine, nutritional, and molecular factors regulating these processes is covered, including from a comparative biology perspective.