VisCode: Embedding Information in Visualization Images using Encoder-Decoder Network.

IF 6.5 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Peiying Zhang, Chenhui Li, Changbo Wang
{"title":"VisCode: Embedding Information in Visualization Images using Encoder-Decoder Network.","authors":"Peiying Zhang,&nbsp;Chenhui Li,&nbsp;Changbo Wang","doi":"10.1109/TVCG.2020.3030343","DOIUrl":null,"url":null,"abstract":"<p><p>We present an approach called VisCode for embedding information into visualization images. This technology can implicitly embed data information specified by the user into a visualization while ensuring that the encoded visualization image is not distorted. The VisCode framework is based on a deep neural network. We propose to use visualization images and QR codes data as training data and design a robust deep encoder-decoder network. The designed model considers the salient features of visualization images to reduce the explicit visual loss caused by encoding. To further support large-scale encoding and decoding, we consider the characteristics of information visualization and propose a saliency-based QR code layout algorithm. We present a variety of practical applications of VisCode in the context of information visualization and conduct a comprehensive evaluation of the perceptual quality of encoding, decoding success rate, anti-attack capability, time performance, etc. The evaluation results demonstrate the effectiveness of VisCode.</p>","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":"326-336"},"PeriodicalIF":6.5000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TVCG.2020.3030343","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Visualization and Computer Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TVCG.2020.3030343","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 26

Abstract

We present an approach called VisCode for embedding information into visualization images. This technology can implicitly embed data information specified by the user into a visualization while ensuring that the encoded visualization image is not distorted. The VisCode framework is based on a deep neural network. We propose to use visualization images and QR codes data as training data and design a robust deep encoder-decoder network. The designed model considers the salient features of visualization images to reduce the explicit visual loss caused by encoding. To further support large-scale encoding and decoding, we consider the characteristics of information visualization and propose a saliency-based QR code layout algorithm. We present a variety of practical applications of VisCode in the context of information visualization and conduct a comprehensive evaluation of the perceptual quality of encoding, decoding success rate, anti-attack capability, time performance, etc. The evaluation results demonstrate the effectiveness of VisCode.

使用编码器-解码器网络在可视化图像中嵌入信息。
我们提出了一种称为VisCode的方法,用于将信息嵌入到可视化图像中。该技术可以隐式地将用户指定的数据信息嵌入到可视化中,同时保证编码后的可视化图像不失真。VisCode框架是基于深度神经网络的。我们建议使用可视化图像和QR码数据作为训练数据,设计一个鲁棒的深度编码器-解码器网络。设计的模型考虑了可视化图像的显著特征,减少了编码造成的显式视觉损失。为了进一步支持大规模的编码和解码,我们考虑了信息可视化的特点,提出了一种基于显著性的QR码布局算法。我们介绍了VisCode在信息可视化背景下的各种实际应用,并对编码感知质量、解码成功率、抗攻击能力、时间性能等进行了综合评价。评价结果证明了VisCode的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Visualization and Computer Graphics
IEEE Transactions on Visualization and Computer Graphics 工程技术-计算机:软件工程
CiteScore
10.40
自引率
19.20%
发文量
946
审稿时长
4.5 months
期刊介绍: TVCG is a scholarly, archival journal published monthly. Its Editorial Board strives to publish papers that present important research results and state-of-the-art seminal papers in computer graphics, visualization, and virtual reality. Specific topics include, but are not limited to: rendering technologies; geometric modeling and processing; shape analysis; graphics hardware; animation and simulation; perception, interaction and user interfaces; haptics; computational photography; high-dynamic range imaging and display; user studies and evaluation; biomedical visualization; volume visualization and graphics; visual analytics for machine learning; topology-based visualization; visual programming and software visualization; visualization in data science; virtual reality, augmented reality and mixed reality; advanced display technology, (e.g., 3D, immersive and multi-modal displays); applications of computer graphics and visualization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信