{"title":"Long-range chromatin interactions in pathogenic gene expression control.","authors":"Nahyun Kong, Inkyung Jung","doi":"10.1080/21541264.2020.1843958","DOIUrl":null,"url":null,"abstract":"<p><p>A large number of distal <i>cis</i>-regulatory elements (<i>c</i>REs) have been annotated in the human genome, which plays a central role in orchestrating spatiotemporal gene expression. Since many <i>c</i>REs regulate non-adjacent genes, long-range <i>c</i>RE-promoter interactions are an important factor in the functional characterization of the engaged <i>c</i>REs. In this regard, recent studies have demonstrated that identification of long-range target genes can decipher the effect of genetic mutations residing within <i>c</i>REs on abnormal gene expression. In addition, investigation of altered long-range <i>c</i>REs-promoter interactions induced by chromosomal rearrangements has revealed their critical roles in pathogenic gene expression. In this review, we briefly discuss how the analysis of 3D chromatin structure can help us understand the functional impact of <i>c</i>REs harboring disease-associated genetic variants and how chromosomal rearrangements disrupting topologically associating domains can lead to pathogenic gene expression.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"211-216"},"PeriodicalIF":3.6000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541264.2020.1843958","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transcription-Austin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21541264.2020.1843958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
A large number of distal cis-regulatory elements (cREs) have been annotated in the human genome, which plays a central role in orchestrating spatiotemporal gene expression. Since many cREs regulate non-adjacent genes, long-range cRE-promoter interactions are an important factor in the functional characterization of the engaged cREs. In this regard, recent studies have demonstrated that identification of long-range target genes can decipher the effect of genetic mutations residing within cREs on abnormal gene expression. In addition, investigation of altered long-range cREs-promoter interactions induced by chromosomal rearrangements has revealed their critical roles in pathogenic gene expression. In this review, we briefly discuss how the analysis of 3D chromatin structure can help us understand the functional impact of cREs harboring disease-associated genetic variants and how chromosomal rearrangements disrupting topologically associating domains can lead to pathogenic gene expression.