Automated 3D bio-imaging analysis of nuclear organization by NucleusJ 2.0.

Tristan Dubos, Axel Poulet, Céline Gonthier-Gueret, Guillaume Mougeot, Emmanuel Vanrobays, Yanru Li, Sylvie Tutois, Emilie Pery, Frédéric Chausse, Aline V Probst, Christophe Tatout, Sophie Desset
{"title":"Automated 3D bio-imaging analysis of nuclear organization by NucleusJ 2.0.","authors":"Tristan Dubos,&nbsp;Axel Poulet,&nbsp;Céline Gonthier-Gueret,&nbsp;Guillaume Mougeot,&nbsp;Emmanuel Vanrobays,&nbsp;Yanru Li,&nbsp;Sylvie Tutois,&nbsp;Emilie Pery,&nbsp;Frédéric Chausse,&nbsp;Aline V Probst,&nbsp;Christophe Tatout,&nbsp;Sophie Desset","doi":"10.1080/19491034.2020.1845012","DOIUrl":null,"url":null,"abstract":"<p><p>NucleusJ 1.0, an ImageJ plugin, is a useful tool to analyze nuclear morphology and chromatin organization in plant and animal cells. NucleusJ 2.0 is a new release of NucleusJ, in which image processing is achieved more quickly using a command-lineuser interface. Starting with large collection of 3D nuclei, segmentation can be performed by the previously developed Otsu-modified method or by a new 3D gift-wrapping method, taking better account of nuclear indentations and unstained nucleoli. These two complementary methods are compared for their accuracy by using three types of datasets available to the community at <u>https://www.brookes.ac.uk/indepth/images/</u> . Finally, NucleusJ 2.0 was evaluated using original plant genetic material by assessing its efficiency on nuclei stained with DNA dyes or after 3D-DNA Fluorescence <i>in situ</i> hybridization. With these improvements, NucleusJ 2.0 permits the generation of large user-curated datasets that will be useful for software benchmarking or to train convolution neural networks.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19491034.2020.1845012","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleus (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19491034.2020.1845012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

NucleusJ 1.0, an ImageJ plugin, is a useful tool to analyze nuclear morphology and chromatin organization in plant and animal cells. NucleusJ 2.0 is a new release of NucleusJ, in which image processing is achieved more quickly using a command-lineuser interface. Starting with large collection of 3D nuclei, segmentation can be performed by the previously developed Otsu-modified method or by a new 3D gift-wrapping method, taking better account of nuclear indentations and unstained nucleoli. These two complementary methods are compared for their accuracy by using three types of datasets available to the community at https://www.brookes.ac.uk/indepth/images/ . Finally, NucleusJ 2.0 was evaluated using original plant genetic material by assessing its efficiency on nuclei stained with DNA dyes or after 3D-DNA Fluorescence in situ hybridization. With these improvements, NucleusJ 2.0 permits the generation of large user-curated datasets that will be useful for software benchmarking or to train convolution neural networks.

Abstract Image

Abstract Image

Abstract Image

利用nucleusj2.0对核组织进行自动三维生物成像分析。
nucleusj1.0是一个ImageJ插件,用于分析植物和动物细胞的核形态和染色质组织。NucleusJ 2.0是NucleusJ的新版本,其中使用命令行用户界面可以更快地实现图像处理。从大量的3D细胞核开始,可以通过先前开发的otsu改进方法或新的3D礼品包装方法进行分割,更好地考虑到核凹痕和未染色的核仁。这两种互补的方法通过使用在https://www.brookes.ac.uk/indepth/images/上提供的三种类型的数据集来比较它们的准确性。最后,利用原始植物遗传材料,通过DNA染色和3D-DNA荧光原位杂交,评估nucleusj2.0对细胞核的效率。有了这些改进,NucleusJ 2.0允许生成大型用户管理的数据集,这些数据集将对软件基准测试或训练卷积神经网络有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信