From the Outside in: An Overview of Positron Imaging of Plant and Soil Processes.

IF 2.2 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS
Michael P Schmidt, Steven D Mamet, Richard A Ferrieri, Derek Peak, Steven D Siciliano
{"title":"From the Outside in: An Overview of Positron Imaging of Plant and Soil Processes.","authors":"Michael P Schmidt,&nbsp;Steven D Mamet,&nbsp;Richard A Ferrieri,&nbsp;Derek Peak,&nbsp;Steven D Siciliano","doi":"10.1177/1536012120966405","DOIUrl":null,"url":null,"abstract":"<p><p>Positron-emitting nuclides have long been used as imaging agents in medical science to spatially trace processes non-invasively, allowing for real-time molecular imaging using low tracer concentrations. This ability to non-destructively visualize processes in real time also makes positron imaging uniquely suitable for probing various processes in plants and porous environmental media, such as soils and sediments. Here, we provide an overview of historical and current applications of positron imaging in environmental research. We highlight plant physiological research, where positron imaging has been used extensively to image dynamics of macronutrients, signalling molecules, trace elements, and contaminant metals under various conditions and perturbations. We describe how positron imaging is used in porous soils and sediments to visualize transport, flow, and microbial metabolic processes. We also address the interface between positron imaging and other imaging approaches, and present accompanying chemical analysis of labelled compounds for reviewed topics, highlighting the bridge between positron imaging and complementary techniques across scales. Finally, we discuss possible future applications of positron imaging and its potential as a nexus of interdisciplinary biogeochemical research.</p>","PeriodicalId":18855,"journal":{"name":"Molecular Imaging","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1536012120966405","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/1536012120966405","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 7

Abstract

Positron-emitting nuclides have long been used as imaging agents in medical science to spatially trace processes non-invasively, allowing for real-time molecular imaging using low tracer concentrations. This ability to non-destructively visualize processes in real time also makes positron imaging uniquely suitable for probing various processes in plants and porous environmental media, such as soils and sediments. Here, we provide an overview of historical and current applications of positron imaging in environmental research. We highlight plant physiological research, where positron imaging has been used extensively to image dynamics of macronutrients, signalling molecules, trace elements, and contaminant metals under various conditions and perturbations. We describe how positron imaging is used in porous soils and sediments to visualize transport, flow, and microbial metabolic processes. We also address the interface between positron imaging and other imaging approaches, and present accompanying chemical analysis of labelled compounds for reviewed topics, highlighting the bridge between positron imaging and complementary techniques across scales. Finally, we discuss possible future applications of positron imaging and its potential as a nexus of interdisciplinary biogeochemical research.

Abstract Image

Abstract Image

Abstract Image

从外到内:植物和土壤过程的正电子成像综述。
长期以来,正电子发射核素一直被用作医学科学中的显像剂,用于无创的空间跟踪过程,允许使用低示踪剂浓度进行实时分子成像。这种非破坏性实时可视化过程的能力也使得正电子成像非常适合探测植物和多孔环境介质(如土壤和沉积物)中的各种过程。本文综述了正电子成像技术在环境研究中的历史和现状。我们重点介绍了植物生理学研究,其中正电子成像已广泛应用于各种条件和扰动下的常量营养素,信号分子,微量元素和污染金属的成像动力学。我们描述了如何在多孔土壤和沉积物中使用正电子成像来可视化运输,流动和微生物代谢过程。我们还讨论了正电子成像和其他成像方法之间的界面,并为复习主题提供了标记化合物的伴随化学分析,强调了正电子成像和跨尺度互补技术之间的桥梁。最后,我们讨论了正电子成像未来可能的应用及其作为跨学科生物地球化学研究纽带的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Imaging
Molecular Imaging Biochemistry, Genetics and Molecular Biology-Biotechnology
自引率
3.60%
发文量
21
期刊介绍: Molecular Imaging is a peer-reviewed, open access journal highlighting the breadth of molecular imaging research from basic science to preclinical studies to human applications. This serves both the scientific and clinical communities by disseminating novel results and concepts relevant to the biological study of normal and disease processes in both basic and translational studies ranging from mice to humans.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信