Predicting the protein composition of human urine in normal and pathological states: Quantitative description based on Dent1 disease (CLCN5 mutation).

The Journal of Physiology Pub Date : 2021-01-01 Epub Date: 2020-11-24 DOI:10.1113/JP280740
Aurélie Edwards, Erik I Christensen, Robert J Unwin, Anthony G W Norden
{"title":"Predicting the protein composition of human urine in normal and pathological states: Quantitative description based on Dent1 disease (CLCN5 mutation).","authors":"Aurélie Edwards,&nbsp;Erik I Christensen,&nbsp;Robert J Unwin,&nbsp;Anthony G W Norden","doi":"10.1113/JP280740","DOIUrl":null,"url":null,"abstract":"<p><strong>Key points: </strong>The presence of plasma proteins in urine is difficult to interpret quantitatively. It may be a result of impaired glomerular filtration or impaired proximal tubule (PT) reabsorption, or both. Dent1 disease (CLCN5 mutation) abolishes PT protein reabsorption leaving glomerular function intact. Using urine protein measurements from patients with Dent1 disease and normal individuals, we devised a mathematical model that incorporates two PT transport processes with distinct kinetics. This model predicts albumin, α<sub>1</sub> -microglobulin (α<sub>1</sub> -m), β<sub>2</sub> -microglobulin (β<sub>2</sub> -m) and retinol-binding protein 4 (RBP4) urine concentrations. Our results indicate that the urinary excretion of β<sub>2</sub> -m and RBP4 differs from that of albumin and α<sub>1</sub> -m in their sensitivity to changes in the glomerular filtration rate, glomerular protein leak, tubular protein uptake via endocytosis and PT water reabsorption. The model predicts quantitatively how hyperfiltration and glomerular leak interact to promote albuminuria. Our model should contribute to improved understanding and interpretation of urine protein measurements in renal disease.</p><p><strong>Abstract: </strong>To clarify the relative contributions of glomerular filtration and tubular uptake to urinary protein excretion, we developed a mathematical model of protein reabsorption in the human proximal tubule (PT) using Michaelis-Menten kinetics and molar urinary protein measurements taken from human Dent1 disease (CLCN5 loss-of-function mutation). β<sub>2</sub> -Microglobulin (β<sub>2</sub> -m) and retinol-binding protein 4 (RBP4) are normally reabsorbed with 'very high' efficiency uptake kinetics and fractional urinary excretion of 0.025%, whereas albumin and α<sub>1</sub> -microglobulin (α<sub>1</sub> -m) are reabsorbed by 'high' efficiency uptake kinetics and 50-fold higher fractional urinary excretion of 1.15%. Our model correctly predicts the urinary β<sub>2</sub> -m, RBP4 and α<sub>1</sub> -m content in aristolochic acid nephropathy, and elevated β<sub>2</sub> -m excretion with increased single nephron glomerular filtration rate (SNGFR) following unilateral-nephrectomy. We explored how altered endocytic uptake, water reabsorption, SNGFR and glomerular protein filtration affect excretion. Our results help to explain why β<sub>2</sub> -m and RBP4 are more sensitive markers of PT dysfunction than albumin or α<sub>1</sub> -m, and suggest that reduced PT sodium and water reabsorption in Fanconi syndrome may contribute to proteinuria. Transition of albumin excretion from normal to microalbuminuria, a 5-fold increase, corresponds to a 3.5-fold elevation in albumin glomerular filtration, supporting the use of microalbuminuria screening to detect glomerular leak in diabetes. In macroalbuminuria, small albumin permeability changes produce large changes in excretion. However, changes in SNGFR can alter protein excretion, and hyperfiltration with glomerular leak can combine to increase albuminuria. Our model provides a validated quantitative description of the transport processes underlying the protein composition of human urine in normal and pathophysiological states.</p>","PeriodicalId":501632,"journal":{"name":"The Journal of Physiology","volume":" ","pages":"323-341"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1113/JP280740","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP280740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Key points: The presence of plasma proteins in urine is difficult to interpret quantitatively. It may be a result of impaired glomerular filtration or impaired proximal tubule (PT) reabsorption, or both. Dent1 disease (CLCN5 mutation) abolishes PT protein reabsorption leaving glomerular function intact. Using urine protein measurements from patients with Dent1 disease and normal individuals, we devised a mathematical model that incorporates two PT transport processes with distinct kinetics. This model predicts albumin, α1 -microglobulin (α1 -m), β2 -microglobulin (β2 -m) and retinol-binding protein 4 (RBP4) urine concentrations. Our results indicate that the urinary excretion of β2 -m and RBP4 differs from that of albumin and α1 -m in their sensitivity to changes in the glomerular filtration rate, glomerular protein leak, tubular protein uptake via endocytosis and PT water reabsorption. The model predicts quantitatively how hyperfiltration and glomerular leak interact to promote albuminuria. Our model should contribute to improved understanding and interpretation of urine protein measurements in renal disease.

Abstract: To clarify the relative contributions of glomerular filtration and tubular uptake to urinary protein excretion, we developed a mathematical model of protein reabsorption in the human proximal tubule (PT) using Michaelis-Menten kinetics and molar urinary protein measurements taken from human Dent1 disease (CLCN5 loss-of-function mutation). β2 -Microglobulin (β2 -m) and retinol-binding protein 4 (RBP4) are normally reabsorbed with 'very high' efficiency uptake kinetics and fractional urinary excretion of 0.025%, whereas albumin and α1 -microglobulin (α1 -m) are reabsorbed by 'high' efficiency uptake kinetics and 50-fold higher fractional urinary excretion of 1.15%. Our model correctly predicts the urinary β2 -m, RBP4 and α1 -m content in aristolochic acid nephropathy, and elevated β2 -m excretion with increased single nephron glomerular filtration rate (SNGFR) following unilateral-nephrectomy. We explored how altered endocytic uptake, water reabsorption, SNGFR and glomerular protein filtration affect excretion. Our results help to explain why β2 -m and RBP4 are more sensitive markers of PT dysfunction than albumin or α1 -m, and suggest that reduced PT sodium and water reabsorption in Fanconi syndrome may contribute to proteinuria. Transition of albumin excretion from normal to microalbuminuria, a 5-fold increase, corresponds to a 3.5-fold elevation in albumin glomerular filtration, supporting the use of microalbuminuria screening to detect glomerular leak in diabetes. In macroalbuminuria, small albumin permeability changes produce large changes in excretion. However, changes in SNGFR can alter protein excretion, and hyperfiltration with glomerular leak can combine to increase albuminuria. Our model provides a validated quantitative description of the transport processes underlying the protein composition of human urine in normal and pathophysiological states.

预测正常和病理状态下人类尿液的蛋白质组成:基于Dent1病(CLCN5突变)的定量描述
重点:尿中血浆蛋白的存在很难定量解释。它可能是由于肾小球滤过受损或近端小管(PT)重吸收受损,或两者兼而有之。Dent1病(CLCN5突变)破坏PT蛋白的重吸收,使肾小球功能保持完整。通过对Dent1疾病患者和正常人的尿蛋白测量,我们设计了一个包含两种具有不同动力学的PT转运过程的数学模型。该模型预测白蛋白、α1 -微球蛋白(α1 -m)、β2 -微球蛋白(β2 -m)和视黄醇结合蛋白4 (RBP4)尿浓度。我们的结果表明,尿中β2 -m和RBP4对肾小球滤过率、肾小球蛋白泄漏、内吞小管蛋白摄取和PT水重吸收变化的敏感性不同于白蛋白和α1 -m。该模型定量预测高滤过和肾小球渗漏如何相互作用以促进蛋白尿。我们的模型应该有助于提高对肾脏疾病尿蛋白测量的理解和解释。摘要:为了阐明肾小球滤过和小管摄取对尿蛋白排泄的相对贡献,我们利用Michaelis-Menten动力学和从人类Dent1病(CLCN5功能丧失突变)中获得的磨牙尿蛋白测量数据,建立了人类近端小管(PT)蛋白质重吸收的数学模型。β2 -微球蛋白(β2 -m)和视黄醇结合蛋白4 (RBP4)通常以“非常高”的吸收动力学和0.025%的分数尿排泄重吸收,而白蛋白和α1 -微球蛋白(α1 -m)以“高”的吸收动力学重吸收,分数尿排泄高50倍,为1.15%。我们的模型可以准确预测马兜铃酸肾病患者尿中β2 -m、RBP4和α1 -m的含量,以及单侧肾切除术后单肾肾小球滤过率(SNGFR)升高时β2 -m的排泄量升高。我们探讨了改变的内吞摄取、水重吸收、SNGFR和肾小球蛋白滤过如何影响排泄。我们的研究结果有助于解释为什么β2 -m和RBP4是比白蛋白或α1 -m更敏感的PT功能障碍标志物,并提示Fanconi综合征中PT钠和水重吸收减少可能导致蛋白尿。白蛋白排泄从正常到微量白蛋白尿的转变,增加5倍,对应于白蛋白肾小球滤过增高3.5倍,支持使用微量白蛋白尿筛查来检测糖尿病肾小球渗漏。在大量蛋白尿中,小的白蛋白通透性改变会引起排泄的大变化。然而,SNGFR的改变可改变蛋白质排泄,高滤过伴肾小球渗漏可合并增加蛋白尿。我们的模型为正常和病理生理状态下人类尿液蛋白质组成的运输过程提供了有效的定量描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信