{"title":"Formal reasoning about synthetic biology using higher-order-logic theorem proving","authors":"Sa'ed Abed, Adnan Rashid, Osman Hasan","doi":"10.1049/iet-syb.2020.0026","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Synthetic biology is an interdisciplinary field that uses well-established engineering principles for performing the analysis of the biological systems, such as biological circuits, pathways, controllers and enzymes. Conventionally, the analysis of these biological systems is performed using paper-and-pencil proofs and computer simulation methods. However, these methods cannot ensure accurate results due to their inherent limitations. Higher-order-logic (HOL) theorem proving is proposed and used as a complementary approach for analysing linear biological systems, which is based on developing a mathematical model of the genetic circuits and the bio-controllers used in synthetic biology based on HOL and analysing it using deductive reasoning in an interactive theorem prover. The involvement of the logic, mathematics and the deductive reasoning in this method ensures the accuracy of the analysis. It is proposed to model the continuous dynamics of the genetic circuits and their associated controllers using differential equations and perform their transfer function-based analysis using the Laplace transform in a theorem prover. For illustration, the genetic circuits of activated and repressed expressions and autoactivation of protein, and phase lag and lead controllers, which are widely used in cancer-cell identifiers and multi-input receptors for precise disease detection, are formally analyzed.</p>\n </div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687371/pdf/SYB2-14-271.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2020.0026","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Synthetic biology is an interdisciplinary field that uses well-established engineering principles for performing the analysis of the biological systems, such as biological circuits, pathways, controllers and enzymes. Conventionally, the analysis of these biological systems is performed using paper-and-pencil proofs and computer simulation methods. However, these methods cannot ensure accurate results due to their inherent limitations. Higher-order-logic (HOL) theorem proving is proposed and used as a complementary approach for analysing linear biological systems, which is based on developing a mathematical model of the genetic circuits and the bio-controllers used in synthetic biology based on HOL and analysing it using deductive reasoning in an interactive theorem prover. The involvement of the logic, mathematics and the deductive reasoning in this method ensures the accuracy of the analysis. It is proposed to model the continuous dynamics of the genetic circuits and their associated controllers using differential equations and perform their transfer function-based analysis using the Laplace transform in a theorem prover. For illustration, the genetic circuits of activated and repressed expressions and autoactivation of protein, and phase lag and lead controllers, which are widely used in cancer-cell identifiers and multi-input receptors for precise disease detection, are formally analyzed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.