{"title":"Inheritance as Evolved and Evolving Physiological Processes","authors":"Francesca Merlin, Livio Riboli-Sasco","doi":"10.1007/s10441-020-09396-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we adopt a physiological perspective in order to produce an intelligible overview of biological transmission in all its diversity. This allows us to put forward the analysis of transmission mechanisms, with the aim of complementing the usual focus on transmitted factors. We underline the importance of the structural, dynamical, and functional features of transmission mechanisms throughout organisms’ life cycles in order to answer to the question of what is passed on across generations, how and why. On this basis, we propose a vision of biological transmission as networks of heterogeneous physiological mechanisms, not restricted to transmission mechanisms stricto sensu. They prove to be themselves suited candidates for evolutionary explanations. They are processes both necessary for evolution to happen and resulting themselves from evolution. This leads us to call for a strategy of endogenization to account for transmission, and more specifically inheritance, as evolved and evolving physiological mechanisms.</p></div>","PeriodicalId":7057,"journal":{"name":"Acta Biotheoretica","volume":"69 3","pages":"417 - 433"},"PeriodicalIF":1.4000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10441-020-09396-7","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biotheoretica","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-020-09396-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we adopt a physiological perspective in order to produce an intelligible overview of biological transmission in all its diversity. This allows us to put forward the analysis of transmission mechanisms, with the aim of complementing the usual focus on transmitted factors. We underline the importance of the structural, dynamical, and functional features of transmission mechanisms throughout organisms’ life cycles in order to answer to the question of what is passed on across generations, how and why. On this basis, we propose a vision of biological transmission as networks of heterogeneous physiological mechanisms, not restricted to transmission mechanisms stricto sensu. They prove to be themselves suited candidates for evolutionary explanations. They are processes both necessary for evolution to happen and resulting themselves from evolution. This leads us to call for a strategy of endogenization to account for transmission, and more specifically inheritance, as evolved and evolving physiological mechanisms.
期刊介绍:
Acta Biotheoretica is devoted to the promotion of theoretical biology, encompassing mathematical biology and the philosophy of biology, paying special attention to the methodology of formation of biological theory.
Papers on all kind of biological theories are welcome. Interesting subjects include philosophy of biology, biomathematics, computational biology, genetics, ecology and morphology. The process of theory formation can be presented in verbal or mathematical form. Moreover, purely methodological papers can be devoted to the historical origins of the philosophy underlying biological theories and concepts.
Papers should contain clear statements of biological assumptions, and where applicable, a justification of their translation into mathematical form and a detailed discussion of the mathematical treatment. The connection to empirical data should be clarified.
Acta Biotheoretica also welcomes critical book reviews, short comments on previous papers and short notes directing attention to interesting new theoretical ideas.