{"title":"Production of Extracellular Reactive Oxygen Species by Marine Biota.","authors":"Colleen M Hansel, Julia M Diaz","doi":"10.1146/annurev-marine-041320-102550","DOIUrl":null,"url":null,"abstract":"<p><p>Reactive oxygen species (ROS) are produced ubiquitously across the tree of life. Far from being synonymous with toxicity and harm, biological ROS production is increasingly recognized for its essential functions in signaling, growth, biological interactions, and physiochemical defense systems in a diversity of organisms, spanning microbes to mammals. Part of this shift in thinking can be attributed to the wide phylogenetic distribution of specialized mechanisms for ROS production, such as NADPH oxidases, which decouple intracellular and extracellular ROS pools by directly catalyzing the reduction of oxygen in the surrounding aqueous environment. Furthermore, biological ROS production contributes substantially to natural fluxes of ROS in the ocean, thereby influencing the fate of carbon, metals, oxygen, and climate-relevant gases. Here, we review the taxonomic diversity, mechanisms, and roles of extracellular ROS production in marine bacteria, phytoplankton, seaweeds, and corals, highlighting the ecological and biogeochemical influences of this fundamental and remarkably widespread process.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-marine-041320-102550","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Marine Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-marine-041320-102550","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 40
Abstract
Reactive oxygen species (ROS) are produced ubiquitously across the tree of life. Far from being synonymous with toxicity and harm, biological ROS production is increasingly recognized for its essential functions in signaling, growth, biological interactions, and physiochemical defense systems in a diversity of organisms, spanning microbes to mammals. Part of this shift in thinking can be attributed to the wide phylogenetic distribution of specialized mechanisms for ROS production, such as NADPH oxidases, which decouple intracellular and extracellular ROS pools by directly catalyzing the reduction of oxygen in the surrounding aqueous environment. Furthermore, biological ROS production contributes substantially to natural fluxes of ROS in the ocean, thereby influencing the fate of carbon, metals, oxygen, and climate-relevant gases. Here, we review the taxonomic diversity, mechanisms, and roles of extracellular ROS production in marine bacteria, phytoplankton, seaweeds, and corals, highlighting the ecological and biogeochemical influences of this fundamental and remarkably widespread process.
期刊介绍:
The Annual Review of Marine Science, published since 2009, offers a comprehensive overview of the field. It covers various disciplines, including coastal and blue water oceanography (biological, chemical, geological, and physical), ecology, conservation, and technological advancements related to the marine environment. The journal's transition from gated to open access through Annual Reviews' Subscribe to Open program ensures that all articles are available under a CC BY license, promoting wider accessibility and dissemination of knowledge.