Peter Rautek, Matej Mlejnek, Johanna Beyer, Jakob Troidl, Hanspeter Pfister, Thomas Theubl, Markus Hadwiger
{"title":"Objective Observer-Relative Flow Visualization in Curved Spaces for Unsteady 2D Geophysical Flows.","authors":"Peter Rautek, Matej Mlejnek, Johanna Beyer, Jakob Troidl, Hanspeter Pfister, Thomas Theubl, Markus Hadwiger","doi":"10.1109/TVCG.2020.3030454","DOIUrl":null,"url":null,"abstract":"<p><p>Computing and visualizing features in fluid flow often depends on the observer, or reference frame, relative to which the input velocity field is given. A desired property of feature detectors is therefore that they are objective, meaning independent of the input reference frame. However, the standard definition of objectivity is only given for Euclidean domains and cannot be applied in curved spaces. We build on methods from mathematical physics and Riemannian geometry to generalize objectivity to curved spaces, using the powerful notion of symmetry groups as the basis for definition. From this, we develop a general mathematical framework for the objective computation of observer fields for curved spaces, relative to which other computed measures become objective. An important property of our framework is that it works intrinsically in 2D, instead of in the 3D ambient space. This enables a direct generalization of the 2D computation via optimization of observer fields in flat space to curved domains, without having to perform optimization in 3D. We specifically develop the case of unsteady 2D geophysical flows given on spheres, such as the Earth. Our observer fields in curved spaces then enable objective feature computation as well as the visualization of the time evolution of scalar and vector fields, such that the automatically computed reference frames follow moving structures like vortices in a way that makes them appear to be steady.</p>","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":"283-293"},"PeriodicalIF":6.5000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TVCG.2020.3030454","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Visualization and Computer Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TVCG.2020.3030454","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 9
Abstract
Computing and visualizing features in fluid flow often depends on the observer, or reference frame, relative to which the input velocity field is given. A desired property of feature detectors is therefore that they are objective, meaning independent of the input reference frame. However, the standard definition of objectivity is only given for Euclidean domains and cannot be applied in curved spaces. We build on methods from mathematical physics and Riemannian geometry to generalize objectivity to curved spaces, using the powerful notion of symmetry groups as the basis for definition. From this, we develop a general mathematical framework for the objective computation of observer fields for curved spaces, relative to which other computed measures become objective. An important property of our framework is that it works intrinsically in 2D, instead of in the 3D ambient space. This enables a direct generalization of the 2D computation via optimization of observer fields in flat space to curved domains, without having to perform optimization in 3D. We specifically develop the case of unsteady 2D geophysical flows given on spheres, such as the Earth. Our observer fields in curved spaces then enable objective feature computation as well as the visualization of the time evolution of scalar and vector fields, such that the automatically computed reference frames follow moving structures like vortices in a way that makes them appear to be steady.
期刊介绍:
TVCG is a scholarly, archival journal published monthly. Its Editorial Board strives to publish papers that present important research results and state-of-the-art seminal papers in computer graphics, visualization, and virtual reality. Specific topics include, but are not limited to: rendering technologies; geometric modeling and processing; shape analysis; graphics hardware; animation and simulation; perception, interaction and user interfaces; haptics; computational photography; high-dynamic range imaging and display; user studies and evaluation; biomedical visualization; volume visualization and graphics; visual analytics for machine learning; topology-based visualization; visual programming and software visualization; visualization in data science; virtual reality, augmented reality and mixed reality; advanced display technology, (e.g., 3D, immersive and multi-modal displays); applications of computer graphics and visualization.