Identification of a defense response gene involved in signaling pathways against PVA and PVY in potato.

IF 4.5 2区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zhila Osmani, Mohammad Sadegh Sabet, Kenji S Nakahara, Ali Mokhtassi-Bidgoli, Khabat Vahabi, Ahmad Moieni, Masoud Shams-Bakhsh
{"title":"Identification of a defense response gene involved in signaling pathways against PVA and PVY in potato.","authors":"Zhila Osmani,&nbsp;Mohammad Sadegh Sabet,&nbsp;Kenji S Nakahara,&nbsp;Ali Mokhtassi-Bidgoli,&nbsp;Khabat Vahabi,&nbsp;Ahmad Moieni,&nbsp;Masoud Shams-Bakhsh","doi":"10.1080/21645698.2020.1823776","DOIUrl":null,"url":null,"abstract":"<p><p>Potato is the most important non-grain food crop in the world. Viruses, particularly potato virus Y (PVY) and potato virus A (PVA), are among the major agricultural pathogens causing severe reduction in potato yield and quality worldwide. Virus infection induces host factors to interfere with its infection cycle. Evaluation of these factors facilitates the development of intrinsic resistance to plant viruses. In this study, a small G-protein as one of the critical signaling factors was evaluated in plant response to PVY and PVA to enhance resistance. For this purpose, the gene expression dataset of G-proteins in potato plant under five biotic (viruses, bacteria, fungi, nematodes, and insects) and four abiotic (cold, heat, salinity, and drought) stress conditions were collected from gene expression databases. We reduced the number of the selected G-proteins to a single protein, <i>StSAR1A</i>, which is possibly involved in virus inhibition. <i>StSAR1A</i> overexpressed transgenic plants were created via the Agrobacterium-mediated method. Real-time PCR and Enzyme-linked immunosorbent assay tests of transgenic plants mechanically inoculated with PVY and PVA indicated that the overexpression of <i>StSAR1A</i> gene enhanced resistance to both viruses. The virus-infected transgenic plants exhibited a greater stem length, a larger leaf size, a higher fresh/dry weight, and a greater node number than those of the wild-type plants. The maximal photochemical efficiency of photosystem II, stomatal conductivity, and net photosynthetic rate in the virus-infected transgenic plants were also obviously higher than those of the control. The present study may help to understand aspects of resistance against viruses.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"12 1","pages":"86-105"},"PeriodicalIF":4.5000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21645698.2020.1823776","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21645698.2020.1823776","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 7

Abstract

Potato is the most important non-grain food crop in the world. Viruses, particularly potato virus Y (PVY) and potato virus A (PVA), are among the major agricultural pathogens causing severe reduction in potato yield and quality worldwide. Virus infection induces host factors to interfere with its infection cycle. Evaluation of these factors facilitates the development of intrinsic resistance to plant viruses. In this study, a small G-protein as one of the critical signaling factors was evaluated in plant response to PVY and PVA to enhance resistance. For this purpose, the gene expression dataset of G-proteins in potato plant under five biotic (viruses, bacteria, fungi, nematodes, and insects) and four abiotic (cold, heat, salinity, and drought) stress conditions were collected from gene expression databases. We reduced the number of the selected G-proteins to a single protein, StSAR1A, which is possibly involved in virus inhibition. StSAR1A overexpressed transgenic plants were created via the Agrobacterium-mediated method. Real-time PCR and Enzyme-linked immunosorbent assay tests of transgenic plants mechanically inoculated with PVY and PVA indicated that the overexpression of StSAR1A gene enhanced resistance to both viruses. The virus-infected transgenic plants exhibited a greater stem length, a larger leaf size, a higher fresh/dry weight, and a greater node number than those of the wild-type plants. The maximal photochemical efficiency of photosystem II, stomatal conductivity, and net photosynthetic rate in the virus-infected transgenic plants were also obviously higher than those of the control. The present study may help to understand aspects of resistance against viruses.

Abstract Image

Abstract Image

Abstract Image

马铃薯抗PVA和PVY信号通路相关防御反应基因的鉴定。
马铃薯是世界上最重要的非粮食粮食作物。病毒,特别是马铃薯Y病毒(PVY)和马铃薯A病毒(PVA),是造成全世界马铃薯产量和质量严重下降的主要农业病原体之一。病毒感染诱导宿主因子干扰其感染周期。这些因素的评估有助于植物病毒内在抗性的发展。在本研究中,研究了一个小g蛋白作为植物对PVY和PVA应答的关键信号因子之一,以增强抗性。为此,从基因表达数据库中收集了5种生物(病毒、细菌、真菌、线虫和昆虫)和4种非生物(冷、热、盐和干旱)胁迫条件下马铃薯植株g蛋白的基因表达数据集。我们将选择的g蛋白的数量减少到一个单一的蛋白,StSAR1A,它可能参与病毒抑制。通过农杆菌介导法构建StSAR1A过表达转基因植株。机械接种PVY和PVA转基因植株的Real-time PCR和酶联免疫吸附试验表明,StSAR1A基因的过表达增强了对这两种病毒的抗性。与野生型植株相比,转基因植株的茎长、叶大、鲜重、干重和节数均有所增加。病毒侵染转基因植株的光系统II最大光化学效率、气孔电导率和净光合速率也明显高于对照。目前的研究可能有助于了解病毒抗性的各个方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Gm Crops & Food-Biotechnology in Agriculture and the Food Chain
Gm Crops & Food-Biotechnology in Agriculture and the Food Chain Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
8.10
自引率
10.30%
发文量
22
期刊介绍: GM Crops & Food - Biotechnology in Agriculture and the Food Chain aims to publish high quality research papers, reviews, and commentaries on a wide range of topics involving genetically modified (GM) crops in agriculture and genetically modified food. The journal provides a platform for research papers addressing fundamental questions in the development, testing, and application of transgenic crops. The journal further covers topics relating to socio-economic issues, commercialization, trade and societal issues. GM Crops & Food aims to provide an international forum on all issues related to GM crops, especially toward meaningful communication between scientists and policy-makers. GM Crops & Food will publish relevant and high-impact original research with a special focus on novelty-driven studies with the potential for application. The journal also publishes authoritative review articles on current research and policy initiatives, and commentary on broad perspectives regarding genetically modified crops. The journal serves a wide readership including scientists, breeders, and policy-makers, as well as a wider community of readers (educators, policy makers, scholars, science writers and students) interested in agriculture, medicine, biotechnology, investment, and technology transfer. Topics covered include, but are not limited to: • Production and analysis of transgenic crops • Gene insertion studies • Gene silencing • Factors affecting gene expression • Post-translational analysis • Molecular farming • Field trial analysis • Commercialization of modified crops • Safety and regulatory affairs BIOLOGICAL SCIENCE AND TECHNOLOGY • Biofuels • Data from field trials • Development of transformation technology • Elimination of pollutants (Bioremediation) • Gene silencing mechanisms • Genome Editing • Herbicide resistance • Molecular farming • Pest resistance • Plant reproduction (e.g., male sterility, hybrid breeding, apomixis) • Plants with altered composition • Tolerance to abiotic stress • Transgenesis in agriculture • Biofortification and nutrients improvement • Genomic, proteomic and bioinformatics methods used for developing GM cops ECONOMIC, POLITICAL AND SOCIAL ISSUES • Commercialization • Consumer attitudes • International bodies • National and local government policies • Public perception, intellectual property, education, (bio)ethical issues • Regulation, environmental impact and containment • Socio-economic impact • Food safety and security • Risk assessments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信