Jonatan Fridolfsson, Daniel Arvidsson, Frithjof Doerks, Theresa J Kreidler, Stefan Grau
{"title":"Workplace activity classification from shoe-based movement sensors.","authors":"Jonatan Fridolfsson, Daniel Arvidsson, Frithjof Doerks, Theresa J Kreidler, Stefan Grau","doi":"10.1186/s42490-020-00042-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>High occupational physical activity is associated with lower health. Shoe-based movement sensors can provide an objective measurement of occupational physical activity in a lab setting but the performance of such methods in a free-living environment have not been investigated. The aim of the current study was to investigate the feasibility and accuracy of shoe sensor-based activity classification in an industrial work setting.</p><p><strong>Results: </strong>An initial calibration part was performed with 35 subjects who performed different workplace activities in a structured lab setting while the movement was measured by a shoe-sensor. Three different machine-learning models (random forest (RF), support vector machine and k-nearest neighbour) were trained to classify activities using the collected lab data. In a second validation part, 29 industry workers were followed at work while an observer noted their activities and the movement was captured with a shoe-based movement sensor. The performance of the trained classification models were validated using the free-living workplace data. The RF classifier consistently outperformed the other models with a substantial difference in in the free-living validation. The accuracy of the initial RF classifier was 83% in the lab setting and 43% in the free-living validation. After combining activities that was difficult to discriminate the accuracy increased to 96 and 71% in the lab and free-living setting respectively. In the free-living part, 99% of the collected samples either consisted of stationary activities or walking.</p><p><strong>Conclusions: </strong>Walking and stationary activities can be classified with high accuracy from a shoe-based movement sensor in a free-living occupational setting. The distribution of activities at the workplace should be considered when validating activity classification models in a free-living setting.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-020-00042-4","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42490-020-00042-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Background: High occupational physical activity is associated with lower health. Shoe-based movement sensors can provide an objective measurement of occupational physical activity in a lab setting but the performance of such methods in a free-living environment have not been investigated. The aim of the current study was to investigate the feasibility and accuracy of shoe sensor-based activity classification in an industrial work setting.
Results: An initial calibration part was performed with 35 subjects who performed different workplace activities in a structured lab setting while the movement was measured by a shoe-sensor. Three different machine-learning models (random forest (RF), support vector machine and k-nearest neighbour) were trained to classify activities using the collected lab data. In a second validation part, 29 industry workers were followed at work while an observer noted their activities and the movement was captured with a shoe-based movement sensor. The performance of the trained classification models were validated using the free-living workplace data. The RF classifier consistently outperformed the other models with a substantial difference in in the free-living validation. The accuracy of the initial RF classifier was 83% in the lab setting and 43% in the free-living validation. After combining activities that was difficult to discriminate the accuracy increased to 96 and 71% in the lab and free-living setting respectively. In the free-living part, 99% of the collected samples either consisted of stationary activities or walking.
Conclusions: Walking and stationary activities can be classified with high accuracy from a shoe-based movement sensor in a free-living occupational setting. The distribution of activities at the workplace should be considered when validating activity classification models in a free-living setting.