The impact of carbon monoxide inhalation on developing noise-induced hearing loss in guinea pigs.

IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Fereshte Bagheri, Mahbubeh Sheikhzadeh, Ahmadreza Raisi, Mohammad Kamali, Mohammad Faridan
{"title":"The impact of carbon monoxide inhalation on developing noise-induced hearing loss in guinea pigs.","authors":"Fereshte Bagheri,&nbsp;Mahbubeh Sheikhzadeh,&nbsp;Ahmadreza Raisi,&nbsp;Mohammad Kamali,&nbsp;Mohammad Faridan","doi":"10.4103/2045-9912.296040","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon monoxide (CO) poisoning is one of the most common types of fatal poisonings worldwide. Acute exposure to high levels of CO as well as chronic exposure to low levels of CO and excessive noise can lead to high frequency hearing loss. In this study, twelve guinea pigs were randomly divided into two groups: (1) exposed to noise and (2) exposed to noise plus CO. Auditory brainstem responses (ABRs) were measured prior to the experiment and immediately, 5, 10 and 15 days post exposures. There was a significant difference between the ABR thresholds before and immediately after exposure to noise at frequencies of 4, 8, and 16 kHz and the most threshold shift was observed at 8 kHz. There was also a significant difference between the ABR thresholds before and immediately after exposure to noise and CO at frequencies of 2, 4, 8, and 16 kHz which demonstrated a temporary hearing loss after exposure to noise and CO and the major impact of CO on developing noise induced hearing loss occurred at 8 kHz. No significant difference was observed between the ABR thresholds recorded before conducting the experiments and the ones obtained 5, 10 and 15 days after simultaneous exposure to noise and CO at none of frequencies. Simultaneous exposure to noise and CO contributes to transient hearing loss in guinea pigs with the most evident temporary shift at 8 kHz. The methods were accepted in the Ethics Committee of Iran University of Medical Science (registration No. CTRI/2016/01/017170) on January 18, 2016.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"10 3","pages":"110-113"},"PeriodicalIF":3.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e8/c0/MGR-10-110.PMC8086620.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2045-9912.296040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon monoxide (CO) poisoning is one of the most common types of fatal poisonings worldwide. Acute exposure to high levels of CO as well as chronic exposure to low levels of CO and excessive noise can lead to high frequency hearing loss. In this study, twelve guinea pigs were randomly divided into two groups: (1) exposed to noise and (2) exposed to noise plus CO. Auditory brainstem responses (ABRs) were measured prior to the experiment and immediately, 5, 10 and 15 days post exposures. There was a significant difference between the ABR thresholds before and immediately after exposure to noise at frequencies of 4, 8, and 16 kHz and the most threshold shift was observed at 8 kHz. There was also a significant difference between the ABR thresholds before and immediately after exposure to noise and CO at frequencies of 2, 4, 8, and 16 kHz which demonstrated a temporary hearing loss after exposure to noise and CO and the major impact of CO on developing noise induced hearing loss occurred at 8 kHz. No significant difference was observed between the ABR thresholds recorded before conducting the experiments and the ones obtained 5, 10 and 15 days after simultaneous exposure to noise and CO at none of frequencies. Simultaneous exposure to noise and CO contributes to transient hearing loss in guinea pigs with the most evident temporary shift at 8 kHz. The methods were accepted in the Ethics Committee of Iran University of Medical Science (registration No. CTRI/2016/01/017170) on January 18, 2016.

吸入一氧化碳对豚鼠发生噪音性听力损失的影响。
一氧化碳中毒是世界上最常见的致命中毒之一。急性暴露于高水平的一氧化碳以及长期暴露于低水平的一氧化碳和过度的噪音可导致高频听力丧失。本研究将12只豚鼠随机分为两组:(1)噪声暴露组和(2)噪声加CO暴露组。分别在实验前、实验后即刻、实验后5、10和15天测量听觉脑干反应(ABRs)。4、8和16 kHz噪声暴露前后的ABR阈值有显著差异,8 kHz时阈值移位最多。在2、4、8和16 kHz的频率下,接触噪音和一氧化碳前后的ABR阈值也存在显著差异,这表明在接触噪音和一氧化碳后会出现暂时的听力损失,而CO对发生噪音性听力损失的主要影响发生在8 kHz。实验前记录的ABR阈值与同时暴露于噪声和CO的5、10和15天后的ABR阈值之间没有显著差异。同时暴露于噪音和一氧化碳会导致豚鼠短暂性听力丧失,在8千赫时最明显的暂时性移位。这些方法已被伊朗医科大学伦理委员会接受(注册号:CTRI/2016/01/017170),于2016年1月18日发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical Gas Research
Medical Gas Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
5.10
自引率
13.80%
发文量
35
期刊介绍: Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信