Mathematical Framework of Deconvolution Algorithms for Quantification of Perfusion Parameters.

Q3 Medicine
Acta neurologica Taiwanica Pub Date : 2020-09-01
Fanpei Yang, Sukhdeep Singh Bal Bal, Yueh-Feng Sung, Giia-Sheun Peng
{"title":"Mathematical Framework of Deconvolution Algorithms for Quantification of Perfusion Parameters.","authors":"Fanpei Yang,&nbsp;Sukhdeep Singh Bal Bal,&nbsp;Yueh-Feng Sung,&nbsp;Giia-Sheun Peng","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>MR perfusion weighted imaging (PWI) has been used as sensitive indicator of tissue at risk for infarction. Quantitative perfusion parameters such as cerebral blood flow (CBF), mean transit time (MTT) and cerebral blood volume (CBV) can be obtained from post processing of PWI data using standard singular value decomposition algorithm (SVD). Assumption regarding absence of arterial - tissue delay (ATD) used in SVD algorithm results in underestimation of perfusion parameters. To estimate accurate values for perfusion parameters it is important to understand the mathematical framework behind SVD and improved SVD algorithms (bSVD and rSVD).</p><p><strong>Method: </strong>This study explains the mathematical framework of SVD and improved SVD algorithms and uses computational techniques that use bSVD algorithm to obtain perfusion parameters maps of CBF, CBV and MTT for acute stroke patient.</p><p><strong>Result: </strong>Computational techniques based on mathematical deconvolution algorithms are used to post process CBV, CBF and MTT maps where decrease in CBF and CBV were seen in left hemisphere.</p><p><strong>Conclusion: </strong>The bSVD algorithm is found to be sensitive to ATD and provides more accurate estimates of perfusion parameters than the SVD algorithm, however CBF estimates from bSVD and rSVD still remain influenced by other artifacts Keywords: PWI = perfusion weighted imaging, CBF= cerebral blood flow, MTT = mean transit time, CBV= cerebral blood volume, SVD = singular value decomposition algorithm.</p>","PeriodicalId":7102,"journal":{"name":"Acta neurologica Taiwanica","volume":"29(3) ","pages":"79-85"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta neurologica Taiwanica","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: MR perfusion weighted imaging (PWI) has been used as sensitive indicator of tissue at risk for infarction. Quantitative perfusion parameters such as cerebral blood flow (CBF), mean transit time (MTT) and cerebral blood volume (CBV) can be obtained from post processing of PWI data using standard singular value decomposition algorithm (SVD). Assumption regarding absence of arterial - tissue delay (ATD) used in SVD algorithm results in underestimation of perfusion parameters. To estimate accurate values for perfusion parameters it is important to understand the mathematical framework behind SVD and improved SVD algorithms (bSVD and rSVD).

Method: This study explains the mathematical framework of SVD and improved SVD algorithms and uses computational techniques that use bSVD algorithm to obtain perfusion parameters maps of CBF, CBV and MTT for acute stroke patient.

Result: Computational techniques based on mathematical deconvolution algorithms are used to post process CBV, CBF and MTT maps where decrease in CBF and CBV were seen in left hemisphere.

Conclusion: The bSVD algorithm is found to be sensitive to ATD and provides more accurate estimates of perfusion parameters than the SVD algorithm, however CBF estimates from bSVD and rSVD still remain influenced by other artifacts Keywords: PWI = perfusion weighted imaging, CBF= cerebral blood flow, MTT = mean transit time, CBV= cerebral blood volume, SVD = singular value decomposition algorithm.

灌注参数定量反卷积算法的数学框架。
目的:磁共振灌注加权成像(PWI)作为梗死危险组织的敏感指标。采用标准奇异值分解算法(SVD)对PWI数据进行后处理,得到脑血流量(CBF)、平均传递时间(MTT)、脑血容量(CBV)等定量灌注参数。SVD算法中采用的动脉组织延迟(ATD)不存在的假设导致了灌注参数的低估。为了准确估计灌注参数值,了解SVD和改进的SVD算法(bSVD和rSVD)背后的数学框架是很重要的。方法:本研究解释了SVD的数学框架和改进的SVD算法,并利用计算技术,利用bSVD算法获得急性脑卒中患者的CBF、CBV和MTT灌注参数图。结果:基于数学反卷积算法的计算技术用于后处理CBV, CBF和MTT图,其中左半球CBF和CBV减少。结论:bSVD算法对ATD敏感,比SVD算法提供更准确的灌注参数估计,但bSVD和rSVD估计的CBF仍受其他伪影的影响。关键词:PWI =灌注加权成像,CBF=脑血流量,MTT =平均传递时间,CBV=脑血容量,SVD =奇异值分解算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta neurologica Taiwanica
Acta neurologica Taiwanica Medicine-Neurology (clinical)
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信