{"title":"Different Mechanisms of Cigarette Smoking-Induced Lung Cancer","authors":"Ahmed Nagah, Asmaa Amer","doi":"10.1007/s10441-020-09394-9","DOIUrl":null,"url":null,"abstract":"<div><p>The risk of cigarette smoking plays a pivotal role in increasing the incidence rates of lung cancer. This paper sheds new light on modeling the impact of cigarette smoking on lung cancer evolution, especially genetic instability and the number of gene mutations in the genome of stem cells. To handle this issue, we have set up stochastic multi-stage models to fit the data set of the probabilities of current and former smokers from the Nurses’ Health Study cohort of females (NHS) and the Health Professionals Follow up Study cohort of men (HPFS). Throughout this paper, we consider both mutation rates and clonal expansion rates as parameters in each compartment. For current and former smokers, three-driver mutations are most likely to take place in the progression of lung cancer under smoking risk. For current smokers, our findings reveal that two to sixteen gene mutations are required to obtain a cancerous cell among men and women in US. Moreover, two to six (eleven) cancer-mutations are available in the pathway to lung cancer among former smokers who have quit smoking for more (less) than ten years for both male and female patients. This highlights that cigarette smoking stimulates the number of driver mutations during lung tumorigenesis in both sexes. It is very crucial to examine the role of cigarette smoking in determining whether genomic instability is an early stage or late stage in the process of lung carcinogenesis.</p></div>","PeriodicalId":7057,"journal":{"name":"Acta Biotheoretica","volume":"69 1","pages":"37 - 52"},"PeriodicalIF":1.4000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10441-020-09394-9","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biotheoretica","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-020-09394-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 7
Abstract
The risk of cigarette smoking plays a pivotal role in increasing the incidence rates of lung cancer. This paper sheds new light on modeling the impact of cigarette smoking on lung cancer evolution, especially genetic instability and the number of gene mutations in the genome of stem cells. To handle this issue, we have set up stochastic multi-stage models to fit the data set of the probabilities of current and former smokers from the Nurses’ Health Study cohort of females (NHS) and the Health Professionals Follow up Study cohort of men (HPFS). Throughout this paper, we consider both mutation rates and clonal expansion rates as parameters in each compartment. For current and former smokers, three-driver mutations are most likely to take place in the progression of lung cancer under smoking risk. For current smokers, our findings reveal that two to sixteen gene mutations are required to obtain a cancerous cell among men and women in US. Moreover, two to six (eleven) cancer-mutations are available in the pathway to lung cancer among former smokers who have quit smoking for more (less) than ten years for both male and female patients. This highlights that cigarette smoking stimulates the number of driver mutations during lung tumorigenesis in both sexes. It is very crucial to examine the role of cigarette smoking in determining whether genomic instability is an early stage or late stage in the process of lung carcinogenesis.
期刊介绍:
Acta Biotheoretica is devoted to the promotion of theoretical biology, encompassing mathematical biology and the philosophy of biology, paying special attention to the methodology of formation of biological theory.
Papers on all kind of biological theories are welcome. Interesting subjects include philosophy of biology, biomathematics, computational biology, genetics, ecology and morphology. The process of theory formation can be presented in verbal or mathematical form. Moreover, purely methodological papers can be devoted to the historical origins of the philosophy underlying biological theories and concepts.
Papers should contain clear statements of biological assumptions, and where applicable, a justification of their translation into mathematical form and a detailed discussion of the mathematical treatment. The connection to empirical data should be clarified.
Acta Biotheoretica also welcomes critical book reviews, short comments on previous papers and short notes directing attention to interesting new theoretical ideas.