Kristian Stefanov, John McLean, Becky Allan, Jonathan Cavanagh, Rajeev Krishnadas
{"title":"Mild inflammation causes a reduction in resting-state amplitude of low-frequency fluctuation in healthy adult males.","authors":"Kristian Stefanov, John McLean, Becky Allan, Jonathan Cavanagh, Rajeev Krishnadas","doi":"10.1177/2398212820949353","DOIUrl":null,"url":null,"abstract":"<p><p>Systemic inflammation has been associated with negative mood states and human sickness behaviour. Previous studies have shown an association between systemic inflammation and changes in task-related blood-oxygen-level-dependent activity and functional connectivity within large-scale networks. However, no study has examined the effect of inflammation on the magnitude of blood-oxygen-level-dependent low-frequency fluctuations at rest. We used a double-blind placebo-controlled crossover design to randomise 20 male subjects (aged 20-50 years) to receive either a <i>Salmonella typhi</i> vaccine or a placebo saline injection at two separate sessions. All participants underwent a resting-state functional magnetic resonance scan and a measure of inflammation (interleukin 6) and mood (Profile of Mood States) 3 h after injection. We compared the whole brain amplitude of low-frequency fluctuations between the vaccine and placebo conditions using a repeated measures design. Vaccine condition was associated with greater interleukin 6 levels (p < 0.001). Vaccine condition was also associated with lower amplitude of low-frequency fluctuations in the right and left frontal pole, superior frontal gyrus, paracingulate gyrus (Cluster 1) and the right mid and inferior frontal gyrus (Cluster 2) (p < 0.001, false discovery rate corrected). Lower amplitude of low-frequency fluctuations pertaining to first cluster correlated with greater total Profile of Mood States score (worse mood) (r = -0.38; p = 0.04). These results imply possible excitation/inhibition imbalance mechanisms during inflammation that may be a relevant target in psychiatric disease, especially mood disorders.</p>","PeriodicalId":72444,"journal":{"name":"Brain and neuroscience advances","volume":"4 ","pages":"2398212820949353"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2398212820949353","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and neuroscience advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2398212820949353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Systemic inflammation has been associated with negative mood states and human sickness behaviour. Previous studies have shown an association between systemic inflammation and changes in task-related blood-oxygen-level-dependent activity and functional connectivity within large-scale networks. However, no study has examined the effect of inflammation on the magnitude of blood-oxygen-level-dependent low-frequency fluctuations at rest. We used a double-blind placebo-controlled crossover design to randomise 20 male subjects (aged 20-50 years) to receive either a Salmonella typhi vaccine or a placebo saline injection at two separate sessions. All participants underwent a resting-state functional magnetic resonance scan and a measure of inflammation (interleukin 6) and mood (Profile of Mood States) 3 h after injection. We compared the whole brain amplitude of low-frequency fluctuations between the vaccine and placebo conditions using a repeated measures design. Vaccine condition was associated with greater interleukin 6 levels (p < 0.001). Vaccine condition was also associated with lower amplitude of low-frequency fluctuations in the right and left frontal pole, superior frontal gyrus, paracingulate gyrus (Cluster 1) and the right mid and inferior frontal gyrus (Cluster 2) (p < 0.001, false discovery rate corrected). Lower amplitude of low-frequency fluctuations pertaining to first cluster correlated with greater total Profile of Mood States score (worse mood) (r = -0.38; p = 0.04). These results imply possible excitation/inhibition imbalance mechanisms during inflammation that may be a relevant target in psychiatric disease, especially mood disorders.