Organ-on-a-Chip.

4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology
Ilka Maschmeyer, Sofia Kakava
{"title":"Organ-on-a-Chip.","authors":"Ilka Maschmeyer,&nbsp;Sofia Kakava","doi":"10.1007/10_2020_135","DOIUrl":null,"url":null,"abstract":"<p><p>Limitations of the current tools used in the drug development process, cell cultures, and animal models have highlighted the need for a new powerful tool that can emulate the human physiology in vitro. Advances in the field of microfluidics have made the realization of this tool closer than ever. Organ-on-a-chip platforms have been the first step forward, leading to the combination and integration of multiple organ models in the same platform with human-on-a-chip being the ultimate goal. Despite the current progress and technological developments, there are still several unmet engineering and biological challenges curtailing their development and widespread application in the biomedical field. The potentials, challenges, and current work on this unprecedented tool are being discussed in this chapter.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":"179 ","pages":"311-342"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/10_2020_135","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biochemical engineering/biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/10_2020_135","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Limitations of the current tools used in the drug development process, cell cultures, and animal models have highlighted the need for a new powerful tool that can emulate the human physiology in vitro. Advances in the field of microfluidics have made the realization of this tool closer than ever. Organ-on-a-chip platforms have been the first step forward, leading to the combination and integration of multiple organ models in the same platform with human-on-a-chip being the ultimate goal. Despite the current progress and technological developments, there are still several unmet engineering and biological challenges curtailing their development and widespread application in the biomedical field. The potentials, challenges, and current work on this unprecedented tool are being discussed in this chapter.

Organ-on-a-Chip。
目前在药物开发过程、细胞培养和动物模型中使用的工具的局限性突出了对一种新的强大工具的需求,这种工具可以在体外模拟人类生理。微流体领域的进步使这一工具的实现比以往任何时候都更接近。器官芯片平台是向前迈出的第一步,导致多种器官模型在同一平台上的组合和集成,而人体芯片是最终目标。尽管目前取得了进步和技术发展,但仍有一些未满足的工程和生物学挑战限制了它们在生物医学领域的发展和广泛应用。本章将讨论这一前所未有的工具的潜力、挑战和目前的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in biochemical engineering/biotechnology
Advances in biochemical engineering/biotechnology 工程技术-生物工程与应用微生物
CiteScore
5.70
自引率
0.00%
发文量
29
期刊介绍: Advances in Biochemical Engineering/Biotechnology reviews actual trends in modern biotechnology. Its aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required for chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. They give the state-of-the-art of a topic in a comprehensive way thus being a valuable source for the next 3 - 5 years. It also discusses new discoveries and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信