Molten salt strategy and plasma technology induced MnO2 with oxygen vacancy for high performance Zn-ion batteries†

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Fuqiang Shao, Shuke Li, Yanchao Xu, Yang Jiao and Jianrong Chen
{"title":"Molten salt strategy and plasma technology induced MnO2 with oxygen vacancy for high performance Zn-ion batteries†","authors":"Fuqiang Shao, Shuke Li, Yanchao Xu, Yang Jiao and Jianrong Chen","doi":"10.1039/D1NJ03934B","DOIUrl":null,"url":null,"abstract":"<p >The low cost, high energy density, high theoretical capacity and environmental friendliness of manganese dioxide (MnO<small><sub>2</sub></small>) make it a promising electrode material for aqueous zinc-ion batteries. However, poor conductivity and insufficient active sites of MnO<small><sub>2</sub></small> hinder its further development. In this study, a molten salt method and plasma technology are proposed to synthesize an amorphous layer and oxygen vacancies on the surface of MnO<small><sub>2</sub></small>, promoting enhanced charge transport and increased exposed active sites. Originating from its unique electronic structure, the as-prepared MnO<small><sub>2</sub></small>-3 possesses a high discharge capacity of 252 mA h g<small><sup>?1</sup></small> at a current density of 0.1 A g<small><sup>?1</sup></small>, and the capacity retention rate is 81% after 100 cycles. In addition, the sample shows lower polarization and charge transfer resistance. The results of this study show that the molten salt method combined with the plasma treatment technology has a promising prospect in the field of electrochemical energy storage.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 47","pages":" 22202-22207"},"PeriodicalIF":2.7000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2021/nj/d1nj03934b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

The low cost, high energy density, high theoretical capacity and environmental friendliness of manganese dioxide (MnO2) make it a promising electrode material for aqueous zinc-ion batteries. However, poor conductivity and insufficient active sites of MnO2 hinder its further development. In this study, a molten salt method and plasma technology are proposed to synthesize an amorphous layer and oxygen vacancies on the surface of MnO2, promoting enhanced charge transport and increased exposed active sites. Originating from its unique electronic structure, the as-prepared MnO2-3 possesses a high discharge capacity of 252 mA h g?1 at a current density of 0.1 A g?1, and the capacity retention rate is 81% after 100 cycles. In addition, the sample shows lower polarization and charge transfer resistance. The results of this study show that the molten salt method combined with the plasma treatment technology has a promising prospect in the field of electrochemical energy storage.

Abstract Image

高性能锌离子电池的熔盐策略和等离子体技术诱导MnO2氧空位†
二氧化锰(MnO2)具有成本低、能量密度高、理论容量大、环境友好等特点,是一种很有前途的水锌离子电池电极材料。然而,二氧化锰电导率差、活性位点不足阻碍了其进一步发展。在本研究中,提出了熔盐法和等离子体技术在MnO2表面合成非晶层和氧空位,促进电荷传输增强和暴露活性位点增加。由于其独特的电子结构,制备的MnO2-3具有252 mA h g的高放电容量。电流密度为0.1 a g?1,循环100次后容量保持率为81%。此外,样品具有较低的极化和电荷转移电阻。研究结果表明,熔盐法结合等离子体处理技术在电化学储能领域具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信