Systematic analysis of nuclear gene function in respiratory growth and expression of the mitochondrial genome in S. cerevisiae.

IF 4.1 3区 生物学 Q2 CELL BIOLOGY
Maria Stenger, Duc Tung Le, Till Klecker, Benedikt Westermann
{"title":"Systematic analysis of nuclear gene function in respiratory growth and expression of the mitochondrial genome in <i>S. cerevisiae</i>.","authors":"Maria Stenger,&nbsp;Duc Tung Le,&nbsp;Till Klecker,&nbsp;Benedikt Westermann","doi":"10.15698/mic2020.09.729","DOIUrl":null,"url":null,"abstract":"<p><p>The production of metabolic energy in form of ATP by oxidative phosphorylation depends on the coordinated action of hundreds of nuclear-encoded mitochondrial proteins and a handful of proteins encoded by the mitochondrial genome (mtDNA). We used the yeast <i>Saccharomyces cerevisiae</i> as a model system to systematically identify the genes contributing to this process. Integration of genome-wide high-throughput growth assays with previously published large data sets allowed us to define with high confidence a set of 254 nuclear genes that are indispensable for respiratory growth. Next, we induced loss of mtDNA in the yeast deletion collection by growth on ethidium bromide-containing medium and identified twelve genes that are essential for viability in the absence of mtDNA (i.e. <i>petite</i>-negative). Replenishment of mtDNA by cytoduction showed that respiratory-deficient phenotypes are highly variable in many yeast mutants. Using a mitochondrial genome carrying a selectable marker, <i>ARG8</i> <sup><i>m</i></sup> , we screened for mutants that are specifically defective in maintenance of mtDNA and mitochondrial protein synthesis. We found that up to 176 nuclear genes are required for expression of mitochondria-encoded proteins during fermentative growth. Taken together, our data provide a comprehensive picture of the molecular processes that are required for respiratory metabolism in a simple eukaryotic cell.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":" ","pages":"234-249"},"PeriodicalIF":4.1000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453639/pdf/","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15698/mic2020.09.729","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 18

Abstract

The production of metabolic energy in form of ATP by oxidative phosphorylation depends on the coordinated action of hundreds of nuclear-encoded mitochondrial proteins and a handful of proteins encoded by the mitochondrial genome (mtDNA). We used the yeast Saccharomyces cerevisiae as a model system to systematically identify the genes contributing to this process. Integration of genome-wide high-throughput growth assays with previously published large data sets allowed us to define with high confidence a set of 254 nuclear genes that are indispensable for respiratory growth. Next, we induced loss of mtDNA in the yeast deletion collection by growth on ethidium bromide-containing medium and identified twelve genes that are essential for viability in the absence of mtDNA (i.e. petite-negative). Replenishment of mtDNA by cytoduction showed that respiratory-deficient phenotypes are highly variable in many yeast mutants. Using a mitochondrial genome carrying a selectable marker, ARG8 m , we screened for mutants that are specifically defective in maintenance of mtDNA and mitochondrial protein synthesis. We found that up to 176 nuclear genes are required for expression of mitochondria-encoded proteins during fermentative growth. Taken together, our data provide a comprehensive picture of the molecular processes that are required for respiratory metabolism in a simple eukaryotic cell.

Abstract Image

Abstract Image

Abstract Image

酿酒酵母呼吸生长核基因功能及线粒体基因组表达的系统分析。
氧化磷酸化产生ATP形式的代谢能量依赖于数百种核编码线粒体蛋白和线粒体基因组(mtDNA)编码的少数蛋白质的协调作用。我们使用酵母酿酒酵母作为模型系统来系统地识别参与这一过程的基因。将全基因组高通量生长测定与先前发表的大型数据集相结合,使我们能够高度自信地定义一组254个对呼吸生长不可或缺的核基因。接下来,我们通过在含溴乙锭培养基上生长,诱导酵母缺失收集的mtDNA丢失,并鉴定出12个在缺乏mtDNA(即petite-negative)时对生存能力至关重要的基因。通过细胞传导补充mtDNA表明,在许多酵母菌突变体中,呼吸缺陷表型是高度可变的。利用携带可选择标记ARG8 m的线粒体基因组,我们筛选了在mtDNA和线粒体蛋白合成维持方面存在特异性缺陷的突变体。我们发现,在发酵生长过程中,线粒体编码蛋白的表达需要多达176个核基因。综上所述,我们的数据提供了一个简单的真核细胞呼吸代谢所需的分子过程的全面图景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Cell
Microbial Cell Multiple-
CiteScore
6.40
自引率
0.00%
发文量
32
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信