Changzhu Jin, David Moore, John Snell, Dong-Guk Paeng
{"title":"An open-source phase correction toolkit for transcranial focused ultrasound.","authors":"Changzhu Jin, David Moore, John Snell, Dong-Guk Paeng","doi":"10.1186/s42490-020-00043-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The phase correction on transcranial focused ultrasound is essential to regulate unwanted focal point shift caused by skull bone aberration. The aim of the current study was to design and investigate the feasibility of a ray-based phase correction toolkit for transcranial focused ultrasound.</p><p><strong>Results: </strong>The peak pressure at focal area was improved by 140.5 ± 7.0% on target I and 134.8 ± 19.1% on target II using proposed phase correction toolkit, respectively. A total computation time of 402.1 ± 24.5 milliseconds was achieved for each sonication.</p><p><strong>Conclusion: </strong>The designed ray-based phase correction software can be used as a lightweight toolkit to compensate aberrated phase within clinical environment.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"9"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427913/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42490-020-00043-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The phase correction on transcranial focused ultrasound is essential to regulate unwanted focal point shift caused by skull bone aberration. The aim of the current study was to design and investigate the feasibility of a ray-based phase correction toolkit for transcranial focused ultrasound.
Results: The peak pressure at focal area was improved by 140.5 ± 7.0% on target I and 134.8 ± 19.1% on target II using proposed phase correction toolkit, respectively. A total computation time of 402.1 ± 24.5 milliseconds was achieved for each sonication.
Conclusion: The designed ray-based phase correction software can be used as a lightweight toolkit to compensate aberrated phase within clinical environment.