Iterative Bayesian denoising based on variance stabilization using Contourlet Transform with Sharp Frequency Localization: application to EFTEM images.

BMC biomedical engineering Pub Date : 2019-06-13 eCollection Date: 2019-01-01 DOI:10.1186/s42490-019-0013-0
Soumia Sid Ahmed, Zoubeida Messali, Larbi Boubchir, Ahmed Bouridane, Sergio Marco, Cédric Messaoudi
{"title":"Iterative Bayesian denoising based on variance stabilization using Contourlet Transform with Sharp Frequency Localization: application to EFTEM images.","authors":"Soumia Sid Ahmed,&nbsp;Zoubeida Messali,&nbsp;Larbi Boubchir,&nbsp;Ahmed Bouridane,&nbsp;Sergio Marco,&nbsp;Cédric Messaoudi","doi":"10.1186/s42490-019-0013-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Due to the presence of high noise level in tomographic series of energy filtered transmission electron microscopy (EFTEM) images, alignment and 3D reconstruction steps become so difficult. To improve the alignment process which will in turn allow a more accurate and better three dimensional tomography reconstructions, a preprocessing step should be applied to the EFTEM data series.</p><p><strong>Results: </strong>Experiments with real EFTEM data series at low SNR, show the feasibility and the accuracy of the proposed denoising approach being competitive with the best existing methods for Poisson image denoising. The effectiveness of the proposed denoising approach is thanks to the use of a nonparametric Bayesian estimation in the Contourlet Transform with Sharp Frequency Localization Domain (CTSD) and variance stabilizing transformation (VST). Furthermore, the optimal inverse Anscome transformation to obtain the final estimate of the denoised images, has allowed an accurate tomography reconstruction.</p><p><strong>Conclusion: </strong>The proposed approach provides qualitative information on the 3D distribution of individual chemical elements on the considered sample.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"13"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0013-0","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42490-019-0013-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Background: Due to the presence of high noise level in tomographic series of energy filtered transmission electron microscopy (EFTEM) images, alignment and 3D reconstruction steps become so difficult. To improve the alignment process which will in turn allow a more accurate and better three dimensional tomography reconstructions, a preprocessing step should be applied to the EFTEM data series.

Results: Experiments with real EFTEM data series at low SNR, show the feasibility and the accuracy of the proposed denoising approach being competitive with the best existing methods for Poisson image denoising. The effectiveness of the proposed denoising approach is thanks to the use of a nonparametric Bayesian estimation in the Contourlet Transform with Sharp Frequency Localization Domain (CTSD) and variance stabilizing transformation (VST). Furthermore, the optimal inverse Anscome transformation to obtain the final estimate of the denoised images, has allowed an accurate tomography reconstruction.

Conclusion: The proposed approach provides qualitative information on the 3D distribution of individual chemical elements on the considered sample.

Abstract Image

Abstract Image

Abstract Image

基于Contourlet变换方差稳定的迭代贝叶斯去噪及其在EFTEM图像中的应用。
背景:由于能量滤波透射电子显微镜(EFTEM)图像的层析系列存在高噪声,使得校准和三维重建步骤变得非常困难。为了改进对准过程,从而实现更精确和更好的三维层析成像重建,应该对EFTEM数据序列进行预处理。结果:在低信噪比的EFTEM真实数据序列上进行的实验表明,该方法的可行性和准确性与现有的最佳泊松图像去噪方法相媲美。该降噪方法的有效性主要得益于在带有尖锐频率定位域(CTSD)和方差稳定变换(VST)的Contourlet变换中使用了非参数贝叶斯估计。此外,通过最优的Anscome逆变换获得去噪图像的最终估计,可以实现精确的断层扫描重建。结论:提出的方法提供了考虑样品上单个化学元素三维分布的定性信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信