{"title":"Mitochondria Are Fundamental for the Emergence of Metazoans: On Metabolism, Genomic Regulation, and the Birth of Complex Organisms.","authors":"Hadar Medini, Tal Cohen, Dan Mishmar","doi":"10.1146/annurev-genet-021920-105545","DOIUrl":null,"url":null,"abstract":"<p><p>Out of many intracellular bacteria, only the mitochondria and chloroplasts abandoned their independence billions of years ago and became endosymbionts within the host eukaryotic cell. Consequently, one cannot grow eukaryotic cells without their mitochondria, and the mitochondria cannot divide outside of the cell, thus reflecting interdependence. Here, we argue that such interdependence underlies the fundamental role of mitochondrial activities in the emergence of metazoans. Several lines of evidence support our hypothesis: (<i>a</i>) Differentiation and embryogenesis rely on mitochondrial function; (<i>b</i>) mitochondrial metabolites are primary precursors for epigenetic modifications (such as methyl and acetyl), which are critical for chromatin remodeling and gene expression, particularly during differentiation and embryogenesis; and (<i>c</i>) mitonuclear coregulation adapted to accommodate both housekeeping and tissue-dependent metabolic needs. We discuss the evolution of the unique mitochondrial genetic system, mitochondrial metabolites, mitonuclear coregulation, and their critical roles in the emergence of metazoans and in human disorders.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-genet-021920-105545","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genet-021920-105545","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 9
Abstract
Out of many intracellular bacteria, only the mitochondria and chloroplasts abandoned their independence billions of years ago and became endosymbionts within the host eukaryotic cell. Consequently, one cannot grow eukaryotic cells without their mitochondria, and the mitochondria cannot divide outside of the cell, thus reflecting interdependence. Here, we argue that such interdependence underlies the fundamental role of mitochondrial activities in the emergence of metazoans. Several lines of evidence support our hypothesis: (a) Differentiation and embryogenesis rely on mitochondrial function; (b) mitochondrial metabolites are primary precursors for epigenetic modifications (such as methyl and acetyl), which are critical for chromatin remodeling and gene expression, particularly during differentiation and embryogenesis; and (c) mitonuclear coregulation adapted to accommodate both housekeeping and tissue-dependent metabolic needs. We discuss the evolution of the unique mitochondrial genetic system, mitochondrial metabolites, mitonuclear coregulation, and their critical roles in the emergence of metazoans and in human disorders.
期刊介绍:
The Annual Review of Genetics, published since 1967, comprehensively covers significant advancements in genetics. It encompasses various areas such as biochemical, behavioral, cell, and developmental genetics, evolutionary and population genetics, chromosome structure and transmission, gene function and expression, mutation and repair, genomics, immunogenetics, and other topics related to the genetics of viruses, bacteria, fungi, plants, animals, and humans.