Herlon Victor Rodrigues Silva, Andréia Maria da Silva, Pei-Chih Lee, Bruna Farias Brito, Alexandre Rodrigues Silva, Lúcia Daniel Machado da Silva, Pierre Comizzoli
{"title":"Influence of Microwave-Assisted Drying on Structural Integrity and Viability of Testicular Tissues from Adult and Prepubertal Domestic Cats.","authors":"Herlon Victor Rodrigues Silva, Andréia Maria da Silva, Pei-Chih Lee, Bruna Farias Brito, Alexandre Rodrigues Silva, Lúcia Daniel Machado da Silva, Pierre Comizzoli","doi":"10.1089/bio.2020.0048","DOIUrl":null,"url":null,"abstract":"<p><p>Anhydrous preservation is a promising approach for storage of living biomaterials at nonfreezing temperatures. Using the domestic cat model, the objectives of this study were to characterize changes in histology, DNA integrity, and viability of testicular tissues from adult versus prepubertal individuals during microwave-assisted drying. Testes from each age group were cut into small pieces before reversible membrane permeabilization, exposure to trehalose, and microwave-assisted drying during different time periods. In Experiment 1, water content was monitored for up to 40 minutes of drying. Tissues from adult or prepubertal cats experienced similar decreases of water content during the first 10 minutes. Desiccation progressed slowly between 10 and 20 minutes and then remained stable. In Experiment 2, structural properties were explored at 5, 10, and 20 minutes of desiccation. Percentages of normal seminiferous tubules were lower after 20 minutes drying in adult (43%) than in prepubertal tissues (61%). At the same time point, the proportion of cell degeneration was higher in adult (53%) than prepubertal tissues (28%). Percentages of intact DNA in tissues remained above 85% regardless of the microwave time in both age groups. Lastly, adult and prepubertal tissues only lost 33% of viability in both age groups. Collective results demonstrated for the first time that normal morphology, incidence of degeneration, DNA integrity, and viability of testicular tissues remained at acceptable levels during microwave-assisted drying for 20 minutes. Overall, prepubertal testicular tissues appeared to be more resilient to microwave-assisted desiccations than adult tissues. Importantly, water loss in the presence of trehalose after 20 minutes of desiccation already is compatible with long-term storage of testicular tissues at temperatures above -20°C, which is one step closer to future storage at supra-zero temperatures.</p>","PeriodicalId":49231,"journal":{"name":"Biopreservation and Biobanking","volume":" ","pages":"415-424"},"PeriodicalIF":1.2000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/bio.2020.0048","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopreservation and Biobanking","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2020.0048","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 10
Abstract
Anhydrous preservation is a promising approach for storage of living biomaterials at nonfreezing temperatures. Using the domestic cat model, the objectives of this study were to characterize changes in histology, DNA integrity, and viability of testicular tissues from adult versus prepubertal individuals during microwave-assisted drying. Testes from each age group were cut into small pieces before reversible membrane permeabilization, exposure to trehalose, and microwave-assisted drying during different time periods. In Experiment 1, water content was monitored for up to 40 minutes of drying. Tissues from adult or prepubertal cats experienced similar decreases of water content during the first 10 minutes. Desiccation progressed slowly between 10 and 20 minutes and then remained stable. In Experiment 2, structural properties were explored at 5, 10, and 20 minutes of desiccation. Percentages of normal seminiferous tubules were lower after 20 minutes drying in adult (43%) than in prepubertal tissues (61%). At the same time point, the proportion of cell degeneration was higher in adult (53%) than prepubertal tissues (28%). Percentages of intact DNA in tissues remained above 85% regardless of the microwave time in both age groups. Lastly, adult and prepubertal tissues only lost 33% of viability in both age groups. Collective results demonstrated for the first time that normal morphology, incidence of degeneration, DNA integrity, and viability of testicular tissues remained at acceptable levels during microwave-assisted drying for 20 minutes. Overall, prepubertal testicular tissues appeared to be more resilient to microwave-assisted desiccations than adult tissues. Importantly, water loss in the presence of trehalose after 20 minutes of desiccation already is compatible with long-term storage of testicular tissues at temperatures above -20°C, which is one step closer to future storage at supra-zero temperatures.
期刊介绍:
Biopreservation and Biobanking is the first journal to provide a unifying forum for the peer-reviewed communication of recent advances in the emerging and evolving field of biospecimen procurement, processing, preservation and banking, distribution, and use. The Journal publishes a range of original articles focusing on current challenges and problems in biopreservation, and advances in methods to address these issues related to the processing of macromolecules, cells, and tissues for research.
In a new section dedicated to Emerging Markets and Technologies, the Journal highlights the emergence of new markets and technologies that are either adopting or disrupting the biobank framework as they imprint on society. The solutions presented here are anticipated to help drive innovation within the biobank community.
Biopreservation and Biobanking also explores the ethical, legal, and societal considerations surrounding biobanking and biorepository operation. Ideas and practical solutions relevant to improved quality, efficiency, and sustainability of repositories, and relating to their management, operation and oversight are discussed as well.