Tuchakorn Lertwanakarn, Montamas Suntravat, Elda E Sanchez, Worakan Boonhoh, R John Solaro, Beata M Wolska, Jody L Martin, Pieter P de Tombe, Kittipong Tachampa
{"title":"Suppression of cardiomyocyte functions by β-CTX isolated from the Thai king cobra (<i>Ophiophagus hannah</i>) venom via an alternative method.","authors":"Tuchakorn Lertwanakarn, Montamas Suntravat, Elda E Sanchez, Worakan Boonhoh, R John Solaro, Beata M Wolska, Jody L Martin, Pieter P de Tombe, Kittipong Tachampa","doi":"10.1590/1678-9199-JVATITD-2020-0005","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Beta-cardiotoxin (β-CTX), the three-finger toxin isolated from king cobra (<i>Ophiophagus hannah</i>) venom, possesses β-blocker activity as indicated by its negative chronotropy and its binding property to both β-1 and β-2 adrenergic receptors and has been proposed as a novel β-blocker candidate. Previously, β-CTX was isolated and purified by FPLC. Here, we present an alternative method to purify this toxin. In addition, we tested its cytotoxicity against different mammalian muscle cell types and determined the impact on cardiac function in isolated cardiac myocyte so as to provide insights into the pharmacological action of this protein.</p><p><strong>Methods: </strong>β-CTX was isolated from the crude venom of the Thai king cobra using reverse-phased and cation exchange HPLC. <i>In vitro</i> cellular viability MTT assays were performed on mouse myoblast (C2C12), rat smooth muscle (A7r5), and rat cardiac myoblast (H9c2) cells. Cell shortening and calcium transient dynamics were recorded on isolated rat cardiac myocytes over a range of β-CTX concentration.</p><p><strong>Results: </strong>Purified β-CTX was recovered from crude venom (0.53% w/w). MTT assays revealed 50% cytotoxicity on A7r5 cells at 9.41 ± 1.14 µM (n = 3), but no cytotoxicity on C2C12 and H9c2 cells up to 114.09 µM. β-CTX suppressed the extend of rat cardiac cell shortening in a dose-dependent manner; the half-maximal inhibition concentration was 95.97 ± 50.10 nM (n = 3). In addition, the rates of cell shortening and re-lengthening were decreased in β-CTX treated myocytes concomitant with a prolongation of the intracellular calcium transient decay, indicating depression of cardiac contractility secondary to altered cardiac calcium homeostasis.</p><p><strong>Conclusion: </strong>We present an alternative purification method for β-CTX from king cobra venom. We reveal cytotoxicity towards smooth muscle and depression of cardiac contractility by this protein. These data are useful to aid future development of pharmacological agents derived from β-CTX.</p>","PeriodicalId":17565,"journal":{"name":"Journal of Venomous Animals and Toxins Including Tropical Diseases","volume":"26 ","pages":"e20200005"},"PeriodicalIF":1.8000,"publicationDate":"2020-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7375408/pdf/","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Venomous Animals and Toxins Including Tropical Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1590/1678-9199-JVATITD-2020-0005","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
Background: Beta-cardiotoxin (β-CTX), the three-finger toxin isolated from king cobra (Ophiophagus hannah) venom, possesses β-blocker activity as indicated by its negative chronotropy and its binding property to both β-1 and β-2 adrenergic receptors and has been proposed as a novel β-blocker candidate. Previously, β-CTX was isolated and purified by FPLC. Here, we present an alternative method to purify this toxin. In addition, we tested its cytotoxicity against different mammalian muscle cell types and determined the impact on cardiac function in isolated cardiac myocyte so as to provide insights into the pharmacological action of this protein.
Methods: β-CTX was isolated from the crude venom of the Thai king cobra using reverse-phased and cation exchange HPLC. In vitro cellular viability MTT assays were performed on mouse myoblast (C2C12), rat smooth muscle (A7r5), and rat cardiac myoblast (H9c2) cells. Cell shortening and calcium transient dynamics were recorded on isolated rat cardiac myocytes over a range of β-CTX concentration.
Results: Purified β-CTX was recovered from crude venom (0.53% w/w). MTT assays revealed 50% cytotoxicity on A7r5 cells at 9.41 ± 1.14 µM (n = 3), but no cytotoxicity on C2C12 and H9c2 cells up to 114.09 µM. β-CTX suppressed the extend of rat cardiac cell shortening in a dose-dependent manner; the half-maximal inhibition concentration was 95.97 ± 50.10 nM (n = 3). In addition, the rates of cell shortening and re-lengthening were decreased in β-CTX treated myocytes concomitant with a prolongation of the intracellular calcium transient decay, indicating depression of cardiac contractility secondary to altered cardiac calcium homeostasis.
Conclusion: We present an alternative purification method for β-CTX from king cobra venom. We reveal cytotoxicity towards smooth muscle and depression of cardiac contractility by this protein. These data are useful to aid future development of pharmacological agents derived from β-CTX.
期刊介绍:
Journal of Venomous Animals and Toxins including Tropical Diseases (JVATiTD) is a non-commercial academic open access publication dedicated to research on all aspects of toxinology, venomous animals and tropical diseases. Its interdisciplinary content includes original scientific articles covering research on toxins derived from animals, plants and microorganisms. Topics of interest include, but are not limited to:systematics and morphology of venomous animals;physiology, biochemistry, pharmacology and immunology of toxins;epidemiology, clinical aspects and treatment of envenoming by different animals, plants and microorganisms;development and evaluation of antivenoms and toxin-derivative products;epidemiology, clinical aspects and treatment of tropical diseases (caused by virus, bacteria, algae, fungi and parasites) including the neglected tropical diseases (NTDs) defined by the World Health Organization.