{"title":"Efficient prediction of drug–drug interaction using deep learning models","authors":"Prashant Kumar Shukla, Piyush Kumar Shukla, Poonam Sharma, Paresh Rawat, Jashwant Samar, Rahul Moriwal, Manjit Kaur","doi":"10.1049/iet-syb.2019.0116","DOIUrl":null,"url":null,"abstract":"<div>\n <p>A drug–drug interaction or drug synergy is extensively utilised for cancer treatment. However, prediction of drug–drug interaction is defined as an ill-posed problem, because manual testing is only implementable on small group of drugs. Predicting the drug–drug interaction score has been a popular research topic recently. Recently many machine learning models have proposed in the literature to predict the drug–drug interaction score efficiently. However, these models suffer from the over-fitting issue. Therefore, these models are not so-effective for predicting the drug–drug interaction score. In this work, an integrated convolutional mixture density recurrent neural network is proposed and implemented. The proposed model integrates convolutional neural networks, recurrent neural networks and mixture density networks. Extensive comparative analysis reveals that the proposed model significantly outperforms the competitive models.</p>\n </div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/iet-syb.2019.0116","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2019.0116","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 70
Abstract
A drug–drug interaction or drug synergy is extensively utilised for cancer treatment. However, prediction of drug–drug interaction is defined as an ill-posed problem, because manual testing is only implementable on small group of drugs. Predicting the drug–drug interaction score has been a popular research topic recently. Recently many machine learning models have proposed in the literature to predict the drug–drug interaction score efficiently. However, these models suffer from the over-fitting issue. Therefore, these models are not so-effective for predicting the drug–drug interaction score. In this work, an integrated convolutional mixture density recurrent neural network is proposed and implemented. The proposed model integrates convolutional neural networks, recurrent neural networks and mixture density networks. Extensive comparative analysis reveals that the proposed model significantly outperforms the competitive models.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.