GM crop technology use 1996-2018: farm income and production impacts.

IF 4.5 2区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Graham Brookes, Peter Barfoot
{"title":"GM crop technology use 1996-2018: farm income and production impacts.","authors":"Graham Brookes,&nbsp;Peter Barfoot","doi":"10.1080/21645698.2020.1779574","DOIUrl":null,"url":null,"abstract":"<p><p>This paper estimates the global value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier studies which examined impacts on yields, key variable costs of production, direct farm (gross) income, and impacts on the production base of the four main crops of soybeans, corn, cotton, and canola. This updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $18.9 billion in 2018 and $225.1 billion for the period 1996-2018 (in nominal terms). These gains have been divided 52% to farmers in developing countries and 48% to farmers in developed countries. Seventy-two per cent of the gains have derived from yield and production gains with the remaining 28% coming from cost savings. The technology has also made important contributions to increasing global production levels of the four main crops, having, for example, added 278 million tonnes and 498 million tonnes, respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990 s. In terms of investment, for each extra dollar invested in GM crop seeds (relative to the cost of conventional seed), farmers gained an average US $3.75 in extra income. In developing countries, the average return was $4.41 for each extra dollar invested in GM crop seed and in developed countries the average return was $3.24.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"11 4","pages":"242-261"},"PeriodicalIF":4.5000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21645698.2020.1779574","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21645698.2020.1779574","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 44

Abstract

This paper estimates the global value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier studies which examined impacts on yields, key variable costs of production, direct farm (gross) income, and impacts on the production base of the four main crops of soybeans, corn, cotton, and canola. This updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $18.9 billion in 2018 and $225.1 billion for the period 1996-2018 (in nominal terms). These gains have been divided 52% to farmers in developing countries and 48% to farmers in developed countries. Seventy-two per cent of the gains have derived from yield and production gains with the remaining 28% coming from cost savings. The technology has also made important contributions to increasing global production levels of the four main crops, having, for example, added 278 million tonnes and 498 million tonnes, respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990 s. In terms of investment, for each extra dollar invested in GM crop seeds (relative to the cost of conventional seed), farmers gained an average US $3.75 in extra income. In developing countries, the average return was $4.41 for each extra dollar invested in GM crop seed and in developed countries the average return was $3.24.

1996-2018年转基因作物技术使用:农业收入和生产影响。
本文估计了在农业层面上使用转基因作物技术的全球价值。它遵循并更新了早期的研究,这些研究考察了对产量的影响、生产的关键可变成本、直接农场(总收入)收入以及对大豆、玉米、棉花和油菜四种主要作物生产基础的影响。这一最新分析表明,2018年农场一级的净经济效益仍然非常显著,达到189亿美元,1996-2018年期间达到2251亿美元(名义价值)。这些收益中,发展中国家的农民占52%,发达国家的农民占48%。72%的收益来自于产量和产量的增长,剩下的28%来自于成本的节约。该技术还对提高四种主要作物的全球产量水平作出了重要贡献,例如,自1990年代中期采用该技术以来,大豆和玉米的全球产量分别增加了2.78亿吨和4.98亿吨。在投资方面,投资于转基因作物种子的每一美元(相对于传统种子的成本),农民平均可获得3.75美元的额外收入。在发展中国家,在转基因作物种子上每多投资一美元,平均回报为4.41美元,而在发达国家,平均回报为3.24美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Gm Crops & Food-Biotechnology in Agriculture and the Food Chain
Gm Crops & Food-Biotechnology in Agriculture and the Food Chain Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
8.10
自引率
10.30%
发文量
22
期刊介绍: GM Crops & Food - Biotechnology in Agriculture and the Food Chain aims to publish high quality research papers, reviews, and commentaries on a wide range of topics involving genetically modified (GM) crops in agriculture and genetically modified food. The journal provides a platform for research papers addressing fundamental questions in the development, testing, and application of transgenic crops. The journal further covers topics relating to socio-economic issues, commercialization, trade and societal issues. GM Crops & Food aims to provide an international forum on all issues related to GM crops, especially toward meaningful communication between scientists and policy-makers. GM Crops & Food will publish relevant and high-impact original research with a special focus on novelty-driven studies with the potential for application. The journal also publishes authoritative review articles on current research and policy initiatives, and commentary on broad perspectives regarding genetically modified crops. The journal serves a wide readership including scientists, breeders, and policy-makers, as well as a wider community of readers (educators, policy makers, scholars, science writers and students) interested in agriculture, medicine, biotechnology, investment, and technology transfer. Topics covered include, but are not limited to: • Production and analysis of transgenic crops • Gene insertion studies • Gene silencing • Factors affecting gene expression • Post-translational analysis • Molecular farming • Field trial analysis • Commercialization of modified crops • Safety and regulatory affairs BIOLOGICAL SCIENCE AND TECHNOLOGY • Biofuels • Data from field trials • Development of transformation technology • Elimination of pollutants (Bioremediation) • Gene silencing mechanisms • Genome Editing • Herbicide resistance • Molecular farming • Pest resistance • Plant reproduction (e.g., male sterility, hybrid breeding, apomixis) • Plants with altered composition • Tolerance to abiotic stress • Transgenesis in agriculture • Biofortification and nutrients improvement • Genomic, proteomic and bioinformatics methods used for developing GM cops ECONOMIC, POLITICAL AND SOCIAL ISSUES • Commercialization • Consumer attitudes • International bodies • National and local government policies • Public perception, intellectual property, education, (bio)ethical issues • Regulation, environmental impact and containment • Socio-economic impact • Food safety and security • Risk assessments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信