Structural basis for differentiation between two classes of thiolase: Degradative vs biosynthetic thiolase

IF 3.5 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sukritee Bhaskar , David L. Steer , Ruchi Anand , Santosh Panjikar
{"title":"Structural basis for differentiation between two classes of thiolase: Degradative vs biosynthetic thiolase","authors":"Sukritee Bhaskar ,&nbsp;David L. Steer ,&nbsp;Ruchi Anand ,&nbsp;Santosh Panjikar","doi":"10.1016/j.yjsbx.2019.100018","DOIUrl":null,"url":null,"abstract":"<div><p>Thiolases are a well characterized family of enzymes with two distinct categories: degradative, β-ketoadipyl-CoA thiolases and biosynthetic, acetoacetyl-CoA thiolases. Both classes share an identical catalytic triad but catalyze reactions in opposite directions. Moreover, it is established that in contrast to the biosynthetic thiolases the degradative thiolases can accept substrates with broad chain lengths. Hitherto, no residue or structural pattern has been recognized that might help to discern the two thiolases, here we exploit, a tetrameric degradative thiolase from <em>Pseudomonas putida</em> KT2440 annotated as PcaF, as a model system to understand features which distinguishes the two classes using structural studies and bioinformatics analyses. Degradative thiolases have different active site architecture when compared to biosynthetic thiolases, demonstrating the dissimilar chemical nature of the active site architecture. Both thiolases deploy different “anchoring residues” to tether the large Coenzyme A (CoA) or CoA derivatives. Interestingly, the H356 of the catalytic triad in PcaF is directly involved in tethering the CoA/CoA derivatives into the active site and we were able to trap a gridlocked thiolase structure of the H356A mutant, where the CoA was found to be covalently linked to the catalytic cysteine residue, inhibiting the overall reaction. Further, X-ray structures with two long chain CoA derivatives, hexanal-CoA and octanal-CoA helped in delineating the long tunnel of 235 Å<sup>2</sup> surface area in PcaF and led to identification of a unique covering loop exclusive to degradative thiolases that plays an active role in determining the tunnel length and the nature of the binding substrate.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.yjsbx.2019.100018","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Biology: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590152419300169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 7

Abstract

Thiolases are a well characterized family of enzymes with two distinct categories: degradative, β-ketoadipyl-CoA thiolases and biosynthetic, acetoacetyl-CoA thiolases. Both classes share an identical catalytic triad but catalyze reactions in opposite directions. Moreover, it is established that in contrast to the biosynthetic thiolases the degradative thiolases can accept substrates with broad chain lengths. Hitherto, no residue or structural pattern has been recognized that might help to discern the two thiolases, here we exploit, a tetrameric degradative thiolase from Pseudomonas putida KT2440 annotated as PcaF, as a model system to understand features which distinguishes the two classes using structural studies and bioinformatics analyses. Degradative thiolases have different active site architecture when compared to biosynthetic thiolases, demonstrating the dissimilar chemical nature of the active site architecture. Both thiolases deploy different “anchoring residues” to tether the large Coenzyme A (CoA) or CoA derivatives. Interestingly, the H356 of the catalytic triad in PcaF is directly involved in tethering the CoA/CoA derivatives into the active site and we were able to trap a gridlocked thiolase structure of the H356A mutant, where the CoA was found to be covalently linked to the catalytic cysteine residue, inhibiting the overall reaction. Further, X-ray structures with two long chain CoA derivatives, hexanal-CoA and octanal-CoA helped in delineating the long tunnel of 235 Å2 surface area in PcaF and led to identification of a unique covering loop exclusive to degradative thiolases that plays an active role in determining the tunnel length and the nature of the binding substrate.

Abstract Image

区分两类硫醇酶的结构基础:降解型与生物合成型硫醇酶
巯基酶是一类具有明显特征的酶,分为两类:降解型β-酮二基辅酶a巯基酶和生物合成型乙酰乙酰辅酶a巯基酶。这两类具有相同的催化三元组,但催化反应的方向相反。此外,与生物合成硫酶相比,降解硫酶可以接受宽链长的底物。到目前为止,还没有发现可能有助于区分这两种硫酶的残基或结构模式,在这里,我们利用恶臭假单胞菌KT2440标记为PcaF的四聚体降解硫酶作为模型系统,利用结构研究和生物信息学分析来理解区分这两类酶的特征。与生物合成硫酶相比,降解硫酶具有不同的活性位点结构,表明活性位点结构的化学性质不同。这两种硫酶使用不同的“锚定残基”来拴住大的辅酶A (CoA)或CoA衍生物。有趣的是,PcaF中催化三联体的H356直接参与将CoA/CoA衍生物拴在活性位点,我们能够捕获H356A突变体的一个锁住的硫酶结构,其中CoA被发现与催化半胱氨酸残基共价连接,抑制了整个反应。此外,含有两种长链CoA衍生物(己醛-CoA和辛烷-CoA)的x射线结构有助于描绘PcaF 235 Å2表面积的长隧道,并鉴定出降解硫酶特有的独特覆盖环,该覆盖环在确定隧道长度和结合底物的性质方面发挥积极作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Structural Biology: X
Journal of Structural Biology: X Biochemistry, Genetics and Molecular Biology-Structural Biology
CiteScore
6.50
自引率
0.00%
发文量
20
审稿时长
62 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信