Molecular assemblies built with the artificial protein Pizza

IF 3.5 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jeroen P.M. Vrancken , Jana Aupič , Christine Addy , Roman Jerala , Jeremy R.H. Tame , Arnout R.D. Voet
{"title":"Molecular assemblies built with the artificial protein Pizza","authors":"Jeroen P.M. Vrancken ,&nbsp;Jana Aupič ,&nbsp;Christine Addy ,&nbsp;Roman Jerala ,&nbsp;Jeremy R.H. Tame ,&nbsp;Arnout R.D. Voet","doi":"10.1016/j.yjsbx.2020.100027","DOIUrl":null,"url":null,"abstract":"<div><p>Recently an artificial protein named Pizza6 was reported, which possesses six identical tandem repeats and adopts a monomeric <span><math><mrow><mi>β</mi></mrow></math></span>-propeller fold with sixfold structural symmetry. Pizza2, a truncated form that consists of a double tandem repeat, self-assembles into a trimer reconstructing the same propeller architecture as Pizza6. The ability of pizza proteins to self-assemble to form complete propellers makes them interesting building blocks to engineer larger symmetrical protein complexes such as symmetric nanoparticles. Here we have explored the self-assembly of Pizza2 fused to homo-oligomerizing peptides. In total, we engineered five different fusion proteins, of which three appeared to assemble successfully into larger complexes. Further characterization of these proteins showed one monodisperse designer protein with a structure close to the intended design. This protein was further fused to eGFP to investigate functionalization of the nanoparticle. The fusion protein was stable and could be expressed in high yield, showing that Pizza-based nanoparticles may be further decorated with functional domains</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"4 ","pages":"Article 100027"},"PeriodicalIF":3.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.yjsbx.2020.100027","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Biology: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259015242030009X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 7

Abstract

Recently an artificial protein named Pizza6 was reported, which possesses six identical tandem repeats and adopts a monomeric β-propeller fold with sixfold structural symmetry. Pizza2, a truncated form that consists of a double tandem repeat, self-assembles into a trimer reconstructing the same propeller architecture as Pizza6. The ability of pizza proteins to self-assemble to form complete propellers makes them interesting building blocks to engineer larger symmetrical protein complexes such as symmetric nanoparticles. Here we have explored the self-assembly of Pizza2 fused to homo-oligomerizing peptides. In total, we engineered five different fusion proteins, of which three appeared to assemble successfully into larger complexes. Further characterization of these proteins showed one monodisperse designer protein with a structure close to the intended design. This protein was further fused to eGFP to investigate functionalization of the nanoparticle. The fusion protein was stable and could be expressed in high yield, showing that Pizza-based nanoparticles may be further decorated with functional domains

Abstract Image

Abstract Image

Abstract Image

用人造蛋白披萨构建的分子组装
最近报道了一种名为Pizza6的人工蛋白,它具有6个相同的串联重复序列,并采用具有六重结构对称的单体β-螺旋桨折叠。Pizza2是由双串联重复序列组成的截断形式,自组装成三聚体,重建与Pizza6相同的螺旋桨结构。披萨蛋白自组装形成完整螺旋桨的能力,使它们成为设计更大的对称蛋白质复合物(如对称纳米粒子)的有趣基础。在这里,我们探索了Pizza2融合到同源寡聚肽的自组装。我们总共设计了五种不同的融合蛋白,其中三种似乎成功地组装成更大的复合物。对这些蛋白的进一步表征表明,一个单分散的设计蛋白具有接近预期设计的结构。该蛋白进一步与eGFP融合,以研究纳米颗粒的功能化。融合蛋白稳定且高产能表达,表明基于披萨的纳米颗粒可以进一步修饰功能域
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Structural Biology: X
Journal of Structural Biology: X Biochemistry, Genetics and Molecular Biology-Structural Biology
CiteScore
6.50
自引率
0.00%
发文量
20
审稿时长
62 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信