Accelerating high-resolution NMR of half-integer quadrupolar nuclei in solids: SPAM-MQMAS and SPAM-STMAS

IF 1.8 3区 化学 Q4 CHEMISTRY, PHYSICAL
Akiko Sasaki , Yu Tsutsumi , Jean-Paul Amoureux
{"title":"Accelerating high-resolution NMR of half-integer quadrupolar nuclei in solids: SPAM-MQMAS and SPAM-STMAS","authors":"Akiko Sasaki ,&nbsp;Yu Tsutsumi ,&nbsp;Jean-Paul Amoureux","doi":"10.1016/j.ssnmr.2020.101668","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In solid-state NMR, multiple-quantum MAS (MQMAS) and satellite-transition MAS (STMAS) experiments are well-established techniques to obtain high-resolution spectra of half-integer quadrupolar nuclei. In 2004 and 2005, a soft-pulse-added-mixing (SPAM) concept was introduced by Gan and Amoureux to enhance the S/N ratio of </span>MQMAS and STMAS experiments. Despite their robustness and simplicity, SPAM approaches have not yet been widely applied. Here, we further exploit SPAM concepts for sensitivity enhancement upon acquisition of two-dimensional MQMAS and STMAS spectra and also establish a general procedure upon implementation of SPAM-MQMAS and SPAM-STMAS NMR. Its effectiveness and ease in experimental setup are demonstrated using simulations and experiments performed on I ​= ​3/2 (</span><sup>23</sup>Na, <sup>87</sup>Rb), 5/2 (<sup>27</sup>Al, <sup>85</sup>Rb) and 9/2 (<sup>93</sup>Nb) nuclei with a variety of quadrupolar coupling constants (C<sub>Q</sub>). Compared to the conventional z-filter methods, sensitivity enhancements in between 2 and 4 are achievable with SPAM. We recommend to use SPAM with a ratio of 4:1 for the number of echoes and antiechoes to safely maximize the sensitivity and resolution simultaneously. In addition, a comparison of the experimental approaches is made in the context of SPAM-MQMAS and SPAM-STMAS NMR with respect to repetition delay and spinning frequency, aiming to discuss the precautions upon making a judicious choice of high-resolution NMR methods of half-integer quadrupolar nuclei.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101668","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926204020300308","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3

Abstract

In solid-state NMR, multiple-quantum MAS (MQMAS) and satellite-transition MAS (STMAS) experiments are well-established techniques to obtain high-resolution spectra of half-integer quadrupolar nuclei. In 2004 and 2005, a soft-pulse-added-mixing (SPAM) concept was introduced by Gan and Amoureux to enhance the S/N ratio of MQMAS and STMAS experiments. Despite their robustness and simplicity, SPAM approaches have not yet been widely applied. Here, we further exploit SPAM concepts for sensitivity enhancement upon acquisition of two-dimensional MQMAS and STMAS spectra and also establish a general procedure upon implementation of SPAM-MQMAS and SPAM-STMAS NMR. Its effectiveness and ease in experimental setup are demonstrated using simulations and experiments performed on I ​= ​3/2 (23Na, 87Rb), 5/2 (27Al, 85Rb) and 9/2 (93Nb) nuclei with a variety of quadrupolar coupling constants (CQ). Compared to the conventional z-filter methods, sensitivity enhancements in between 2 and 4 are achievable with SPAM. We recommend to use SPAM with a ratio of 4:1 for the number of echoes and antiechoes to safely maximize the sensitivity and resolution simultaneously. In addition, a comparison of the experimental approaches is made in the context of SPAM-MQMAS and SPAM-STMAS NMR with respect to repetition delay and spinning frequency, aiming to discuss the precautions upon making a judicious choice of high-resolution NMR methods of half-integer quadrupolar nuclei.

Abstract Image

固体中半整数四极核的加速高分辨率核磁共振:SPAM-MQMAS和SPAM-STMAS
在固态核磁共振中,多量子MAS (MQMAS)和卫星跃迁MAS (STMAS)实验是获得半整数四极核高分辨率光谱的成熟技术。2004年和2005年,Gan和Amoureux引入了软脉冲添加混合(SPAM)概念,以提高MQMAS和STMAS实验的信噪比。尽管SPAM方法具有健壮性和简单性,但尚未得到广泛应用。在这里,我们进一步利用SPAM概念在获取二维MQMAS和STMAS光谱时提高灵敏度,并建立了实现SPAM-MQMAS和SPAM-STMAS NMR的通用程序。在不同四极耦合常数(CQ)的I = 3/2 (23Na, 87Rb)、5/2 (27Al, 85Rb)和9/2 (93Nb)核上进行了模拟和实验,证明了该方法的有效性和易于实验设置。与传统的z-filter方法相比,SPAM可以实现2到4之间的灵敏度增强。我们建议使用4:1的回波和反回波比例的SPAM,以安全地同时最大化灵敏度和分辨率。此外,在SPAM-MQMAS和SPAM-STMAS核磁共振背景下,对两种实验方法在重复延迟和自旋频率方面进行了比较,旨在探讨在半整数四极核的高分辨率核磁共振方法中明智选择的注意事项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
9.40%
发文量
42
审稿时长
72 days
期刊介绍: The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信