Gregory Marslin, Vinoth Khandelwal, Gregory Franklin
{"title":"Cordycepin Nanoencapsulated in Poly(Lactic-Co-Glycolic Acid) Exhibits Better Cytotoxicity and Lower Hemotoxicity Than Free Drug.","authors":"Gregory Marslin, Vinoth Khandelwal, Gregory Franklin","doi":"10.2147/NSA.S254770","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Cordycepin, a natural product isolated from the fungus <i>Cordyceps militaris,</i> is a potential candidate for breast cancer therapy. However, due to its structural similarity with adenosine, cordycepin is rapidly metabolized into an inactive form in the body, hindering its development as a therapeutic agent. In the present study, we have prepared cordycepin as nanoparticles in poly(lactic-co-glycolic acid) (PLGA) and compared their cellular uptake, cytotoxicity and hemolytic potential with free cordycepin.</p><p><strong>Materials and methods: </strong>Cordycepin-loaded PLGA nanoparticles (CPNPs) were prepared by the double-emulsion solvent evaporation method. Physico-chemical characterization of the nanoparticles was done by zetasizer, transmission electron microscopy (TEM) and reverse-phase high-pressure liquid chromatography (RP-HPLC) analyses. Cellular uptake and cytotoxicity of CPNPs and free drug were tested in human breast cancer cells (MCF7). Hemolytic potential of both of these forms was evaluated in rat red blood cells (RBCs).</p><p><strong>Results: </strong>Physico-chemical characterization revealed that CPNPs were spherical in shape, possessed a size range of 179-246 nm, and released the encapsulated drug sustainably over a period of 10 days. CPNPs exhibited a high level of cellular uptake and cytotoxicity than the free drug in MCF-7 cells. While CPNPs were not toxic to rat RBCs even at high concentrations, free cordycepin induced hemolysis of these cells at relatively low concentration.</p><p><strong>Conclusion: </strong>Our results reveal that delivery as CPNPs could enhance the clinical efficacy of cordycepin substantially.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"13 ","pages":"37-45"},"PeriodicalIF":4.9000,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/NSA.S254770","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology, Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/NSA.S254770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 12
Abstract
Purpose: Cordycepin, a natural product isolated from the fungus Cordyceps militaris, is a potential candidate for breast cancer therapy. However, due to its structural similarity with adenosine, cordycepin is rapidly metabolized into an inactive form in the body, hindering its development as a therapeutic agent. In the present study, we have prepared cordycepin as nanoparticles in poly(lactic-co-glycolic acid) (PLGA) and compared their cellular uptake, cytotoxicity and hemolytic potential with free cordycepin.
Materials and methods: Cordycepin-loaded PLGA nanoparticles (CPNPs) were prepared by the double-emulsion solvent evaporation method. Physico-chemical characterization of the nanoparticles was done by zetasizer, transmission electron microscopy (TEM) and reverse-phase high-pressure liquid chromatography (RP-HPLC) analyses. Cellular uptake and cytotoxicity of CPNPs and free drug were tested in human breast cancer cells (MCF7). Hemolytic potential of both of these forms was evaluated in rat red blood cells (RBCs).
Results: Physico-chemical characterization revealed that CPNPs were spherical in shape, possessed a size range of 179-246 nm, and released the encapsulated drug sustainably over a period of 10 days. CPNPs exhibited a high level of cellular uptake and cytotoxicity than the free drug in MCF-7 cells. While CPNPs were not toxic to rat RBCs even at high concentrations, free cordycepin induced hemolysis of these cells at relatively low concentration.
Conclusion: Our results reveal that delivery as CPNPs could enhance the clinical efficacy of cordycepin substantially.
期刊介绍:
Nanotechnology, Science and Applications is an international, peer-reviewed, Open Access journal that focuses on the science of nanotechnology in a wide range of industrial and academic applications. The journal is characterized by the rapid reporting of reviews, original research, and application studies across all sectors, including engineering, optics, bio-medicine, cosmetics, textiles, resource sustainability and science. Applied research into nano-materials, particles, nano-structures and fabrication, diagnostics and analytics, drug delivery and toxicology constitute the primary direction of the journal.