Subnanoscale Dual-Site Pd–Pt Layers Make PdPtCu Nanocrystals CO-Tolerant Bipolar Effective Electrocatalysts for Alcohol Fuel Cell Devices

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaotong Yang, Qiang Yuan*, Jingwei Li, Tian Sheng*, Ke Xin Yao* and Xun Wang*, 
{"title":"Subnanoscale Dual-Site Pd–Pt Layers Make PdPtCu Nanocrystals CO-Tolerant Bipolar Effective Electrocatalysts for Alcohol Fuel Cell Devices","authors":"Xiaotong Yang,&nbsp;Qiang Yuan*,&nbsp;Jingwei Li,&nbsp;Tian Sheng*,&nbsp;Ke Xin Yao* and Xun Wang*,&nbsp;","doi":"10.1021/acs.nanolett.3c00535","DOIUrl":null,"url":null,"abstract":"<p >Finding a high-performance low-Pt bipolar electrocatalyst in actual direct alcohol fuel cells (DAFCs) remains challenging and desirable. Here, we developed a crystalline [email?protected] subnanometer Pd–Pt “dual site” layer core–shell structure for the oxygen reduction reaction (ORR) and alcohol (methanol, ethylene glycol, glycerol, and their mixtures) oxidation reaction (AOR) in an alkaline electrolyte (denoted D-PdPtCu). The prepared D-PdPtCu/C achieved a direct 4-electron ORR pathway, a full oxidation pathway for AOR, and high CO tolerance. The ORR mass activity (MA) of D-PdPtCu/C delivered a 52.8- or 59.3-fold increase over commercial Pt/C or Pd/C, respectively, and no activity loss after 20000 cycles. The D-PdPtCu/C also exhibited much higher AOR MA and stability than Pt/C or Pd/C. Density functional theory revealed the intrinsic nature of a subnanometer Pd–Pt “dual site” surface for ORR and AOR activity enhancement. The D-PdPtCu/C as an effective bipolar electrocatalyst yielded higher peak power densities than commercial Pt/C in actual DAFCs.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"23 8","pages":"3467–3475"},"PeriodicalIF":9.1000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.3c00535","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

Finding a high-performance low-Pt bipolar electrocatalyst in actual direct alcohol fuel cells (DAFCs) remains challenging and desirable. Here, we developed a crystalline [email?protected] subnanometer Pd–Pt “dual site” layer core–shell structure for the oxygen reduction reaction (ORR) and alcohol (methanol, ethylene glycol, glycerol, and their mixtures) oxidation reaction (AOR) in an alkaline electrolyte (denoted D-PdPtCu). The prepared D-PdPtCu/C achieved a direct 4-electron ORR pathway, a full oxidation pathway for AOR, and high CO tolerance. The ORR mass activity (MA) of D-PdPtCu/C delivered a 52.8- or 59.3-fold increase over commercial Pt/C or Pd/C, respectively, and no activity loss after 20000 cycles. The D-PdPtCu/C also exhibited much higher AOR MA and stability than Pt/C or Pd/C. Density functional theory revealed the intrinsic nature of a subnanometer Pd–Pt “dual site” surface for ORR and AOR activity enhancement. The D-PdPtCu/C as an effective bipolar electrocatalyst yielded higher peak power densities than commercial Pt/C in actual DAFCs.

Abstract Image

亚纳米级双位置Pd-Pt层制备PdPtCu纳米晶耐co双极性有效电催化剂用于酒精燃料电池装置
在实际的直接酒精燃料电池(DAFCs)中寻找一种高性能的低铂双极电催化剂仍然是具有挑战性的,也是值得期待的。在这里,我们开发了一个水晶[电子邮件?]在碱性电解质(记为D-PdPtCu)中用于氧还原反应(ORR)和醇(甲醇、乙二醇、甘油及其混合物)氧化反应(AOR)的亚纳米Pd-Pt“双位点”层核壳结构。制备的D-PdPtCu/C实现了直接的4电子ORR途径,AOR的全氧化途径,并具有较高的CO耐受性。与商业Pt/C或Pd/C相比,D-PdPtCu/C的ORR质量活性(MA)分别提高了52.8倍或59.3倍,并且在20000次循环后没有活性损失。与Pt/C和Pd/C相比,D-PdPtCu/C具有更高的AOR MA和稳定性。密度泛函理论揭示了亚纳米Pd-Pt“双位点”表面增强ORR和AOR活性的本质。作为一种有效的双极性电催化剂,D-PdPtCu/C在实际DAFCs中比商用Pt/C产生更高的峰值功率密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信