Xiaotong Yang, Qiang Yuan*, Jingwei Li, Tian Sheng*, Ke Xin Yao* and Xun Wang*,
{"title":"Subnanoscale Dual-Site Pd–Pt Layers Make PdPtCu Nanocrystals CO-Tolerant Bipolar Effective Electrocatalysts for Alcohol Fuel Cell Devices","authors":"Xiaotong Yang, Qiang Yuan*, Jingwei Li, Tian Sheng*, Ke Xin Yao* and Xun Wang*, ","doi":"10.1021/acs.nanolett.3c00535","DOIUrl":null,"url":null,"abstract":"<p >Finding a high-performance low-Pt bipolar electrocatalyst in actual direct alcohol fuel cells (DAFCs) remains challenging and desirable. Here, we developed a crystalline [email?protected] subnanometer Pd–Pt “dual site” layer core–shell structure for the oxygen reduction reaction (ORR) and alcohol (methanol, ethylene glycol, glycerol, and their mixtures) oxidation reaction (AOR) in an alkaline electrolyte (denoted D-PdPtCu). The prepared D-PdPtCu/C achieved a direct 4-electron ORR pathway, a full oxidation pathway for AOR, and high CO tolerance. The ORR mass activity (MA) of D-PdPtCu/C delivered a 52.8- or 59.3-fold increase over commercial Pt/C or Pd/C, respectively, and no activity loss after 20000 cycles. The D-PdPtCu/C also exhibited much higher AOR MA and stability than Pt/C or Pd/C. Density functional theory revealed the intrinsic nature of a subnanometer Pd–Pt “dual site” surface for ORR and AOR activity enhancement. The D-PdPtCu/C as an effective bipolar electrocatalyst yielded higher peak power densities than commercial Pt/C in actual DAFCs.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"23 8","pages":"3467–3475"},"PeriodicalIF":9.1000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.3c00535","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
Finding a high-performance low-Pt bipolar electrocatalyst in actual direct alcohol fuel cells (DAFCs) remains challenging and desirable. Here, we developed a crystalline [email?protected] subnanometer Pd–Pt “dual site” layer core–shell structure for the oxygen reduction reaction (ORR) and alcohol (methanol, ethylene glycol, glycerol, and their mixtures) oxidation reaction (AOR) in an alkaline electrolyte (denoted D-PdPtCu). The prepared D-PdPtCu/C achieved a direct 4-electron ORR pathway, a full oxidation pathway for AOR, and high CO tolerance. The ORR mass activity (MA) of D-PdPtCu/C delivered a 52.8- or 59.3-fold increase over commercial Pt/C or Pd/C, respectively, and no activity loss after 20000 cycles. The D-PdPtCu/C also exhibited much higher AOR MA and stability than Pt/C or Pd/C. Density functional theory revealed the intrinsic nature of a subnanometer Pd–Pt “dual site” surface for ORR and AOR activity enhancement. The D-PdPtCu/C as an effective bipolar electrocatalyst yielded higher peak power densities than commercial Pt/C in actual DAFCs.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.